
Math 230 Spring 2019
Homework 4 Drew Armstrong

Problem 1. Linear Diophantine Equations. Use the Extended Euclidean Algorithm to
find all integers x, y ∈ Z satisfying the following equation:

345x + 234y = 123.

Solution. There are several ways to do this. We will use the method from class.

First we use the Euclidean Algorithm to show that gcd(345, 234) = 3:

345 = (1)234 + 111
234 = (2)111 + 12

111 = (9)12 + 3
12 = (4)3 + 0.

Then we cancel 3 from both sides to obtain the reduced equation, which has the same solution
as the original equation:

115x + 78y = 41.

Since gcd(115, 78) = 1 we know that the general homogeneous solution is (x, y) = (−78k, 115k)
for all k ∈ Z. Next we apply the Extended/Vector Euclidean Algorithm to find one particular
solution. That is, we consider the set of triples (x, y, z) ∈ Z3 satisfying 115x + 78y = z. Then
we apply the Euclidean Algorithm to the easy triples r1 = (1, 0, 115) and r2 = (0, 1, 78):

x y z row operation
1 0 115 r1
0 1 78 r2
1 −1 37 r3 = r1 − (1)r2
−2 3 4 r4 = r2 − (2)r3
19 −28 1 r5 = r3 − (9)r4
−78 115 0 r6 = r4 − (4)r5

To obtain one solution we multiply row r5 by 41 to get

115(19) + 78(−28) = 1

115(779) + 78(−1148) = 41.

Finally, we add the homogeneous solution to obtain the complete solution:

115(779− 78k) + 78(−1148 + 115k) = 41

345(779− 78k) + 234(−1148 + 115k) = 123.

Problem 2. Euclid’s Lemma. For all integers a, b, c ∈ Z prove that

(a|bc ∧ gcd(a, b) = 1)⇒ (a|c).

[Hint: If gcd(a, b) = 1 then one can use the Extended Euclidean Algorithm to find integers
x, y ∈ Z satisfying ax + by = 1. Multiply both sides of this equation by c.]



Proof. Assume that a|bc (say ak = bc with k ∈ Z) and gcd(a, b) = 1. From the Extended
Euclidean Algorithm there exist integers x, y ∈ Z such that ax + by = gcd(a, b) = 1. Now
multiply both sides by c to obtain

ax + by = 1

(ax + by)c = c

acx + (bc)y = c

acx + (ak)y = c

a(cx + ky) = c,

which implies that a|c as desired. �

Problem 3. Prime Numbers. Given integers d, n ≥ 1 we say that d is a proper divisor of
n if d|n and 1 < d < n. An integer p ≥ 2 is called prime if if has no proper divisors.

(a) Prove that every integer n ≥ 2 has a prime divisor. [Hint: Assume for contradiction
that there exists a positive integer with no prime divisor and let m be the smallest
such integer. Since m is not prime it must have a proper divisor. Now what?]

(b) Euclid’s Proof of Infinite Primes. In this problem you will prove that there exist
infinitely many prime numbers. So assume for contradiction that there are only finitely
many primes, and call them 2 = p1 < p2 < · · · < pk. Now consider the number

n = (p1p2 · · · pk) + 1.

From part (a) you know that there exists a prime factor p|n. But show that this p
cannot be equal to any of p1, p2, . . . , pk.

Proof. (a) Assume for contradiction that there exists some integer n ≥ 2 that is not divisible
by any prime number. Let m be the smallest such integer, which exists by Well-Ordering.
Since m|m we know that m is not prime. By definition of “prime” there exists a proper divisor
d|m with 1 < d < m. But observe that d ≥ 2 and d < m. Thus by minimality of m there
exists a prime number p such that p|d. Finally, since p|d and d|m we conclude that p|m, which
contradicts the fact that m is not divisible by any prime number.

(b) Assume for contradiction that the exist only finitely many primes and call them 2 = p1 <
p2 < · · · < pk. Now consider the number

n = (p1p2 · · · pk) + 1.

Since n ≥ 2 we know from part (a) that there exists some prime number p with p|n. Say
p` = n for some ` ∈ Z. But then since p is prime we must have p = pi for some i ∈ {1, . . . , k}
and it follows that

1 = (p1 · · · pk)− n

1 = pi (p1 · · · pi−1pi+1 · · · pk) + pik

1 = pi (p1 · · · pi−1pi+1 · · · pk + `) .

Finally, since pi|1 we conclude that pi = ±1, which contradicts the fact that pi is prime. �

Problem 4. Base-b Arithmetic. Let us fix an integer b ≥ 2 called the “base.”

(a) For all integers k ≥ 1 observe that (b− 1)(1 + b + b2 + · · ·+ bk−1) = bk − 1.



(b) Existence. For all integers n ≥ 0 consider the following statement:

P (n) := “∃ r0, r1, r2, . . . ∈ {0, 1, . . . , b− 1}, n = r0 + r1b + r2b
2 + · · · .”

Fix n ≥ 0 and assume for induction that P (n) is true. In this case, prove that P (n+1)
is also true. [Hint: You have assumed n = r0 + r1b + r2b

2 + · · · for some integers
r0, r1, r2, . . . ∈ {0, 1, . . . , b − 1}. Let k ≥ 0 be the smallest index such that rk 6= b − 1
and show that n+ 1 = (rk + 1)bk + rk+1b

k+1 + rk+2b
k+2 + · · · . You will need part (a).]

(c) Uniqueness. For all integers k ≥ 0 consider the statement Q(k) := “For all integers
r0, . . . , rk and s0, . . . , sk in the set {0, 1, . . . , b− 1} we have

(r0 + r1b + · · ·+ rkb
k = s0 + s1b + · · · skbk)⇒ (r0 = s0 ∧ r1 = s1 ∧ · · · ∧ rk = sk).”

Fix k ≥ 0 and assume for induction that Q(k) is true. In this case, prove that Q(k+1)
is also true. [Hint: Assume that n = r0 + · · · + rk+1b

k+1 = s0 + · · · + sk+1b
k+1. Now

use the fact that the quotient and remainder of n mod b are unique.]

Proof. (a) For any integers b, k ∈ Z with k ≥ 1 we have

(b− 1)(1 + b + b2 + · · ·+ bk−1) =
b + b2 + · · ·+ bk−1 + bk

−1− b− b2 − · · · − bk−1 = −1 + bk.

(b) Now fix b ≥ 2 and consider the statement

P (n) := “∃ r0, r1, r2, . . . ∈ {0, 1, . . . , b− 1}, n = r0 + r1b + r2b
2 + · · · .”

Note that P (0) is true because 0 = 0 + 0b + 0b2 + · · · . Now assume that the statement P (n)
is true. That is, assume that there exist integers r0, r1, r2, . . . ∈ {0, 1, . . . , b− 1} such that

n = r0 + r1b + r2b
2 + · · · .

In this case we want to prove that there exist s0, s1, s2, . . . ∈ {0, 1, . . . , b− 1} such that

n = s0 + s1b + s2b
2 + · · · .

If r0 < b− 1 then we can simply add 1 to r0. But what if r0 = b− 1? Then we have to replace
r0 by 0 and “carry the 1.” To deal with all cases at the same time, let k ≥ 0 be minimal such
that rk 6= b− 1. Then from part (a) we have

n = (b− 1) + (b− 1)b + · · ·+ (b− 1)bk−1 + rkb
k + rk+1b

k+1 + · · ·

n = (b− 1)(1 + b + · · ·+ bk−1) + rkb
k + rk+1b

k+1 + · · ·

n = (−1 + bk) + rkb
k + rk+1b

k+1 + · · ·

n + 1 = (rk + 1)bk + rk+1b
k+1 + · · ·

n + 1 = 0 + 0b + · · · 0bk−1 + (rk + 1)bk + rk+1b
k+1 + · · · .

This prove that P (n + 1) is true because rk + 1 ≤ b1.

(c) Next let Q(k) be the statement that “for all integers r0, . . . , rk and s0, . . . , sk in the set
{0, 1, . . . , b − 1}, if r0 + r1b + · · · + rkb

k = s0 + s1b + · · · + skb
k then we must have r0 = s0,

r1 = r2, . . . and rk = sk.” Note that P (0) is true because r0 = s0 implies r0 = s0. Now assume
for induction that P (k) is true. In this case we want to prove that P (k + 1) is true.

So consider any r0, . . . , rk+1 and s0, . . . , sk+1 in the set {0, 1, . . . , b− 1} and suppose that

r0 + r1b + · · ·+ rk+1b
k+1 = s0 + s1b + · · ·+ sk+1b

k+1.



In this case we will prove that ri = si for all i ∈ {0, . . . , k + 1}. To do this we apply “division
mod b” to both sides:

r0 + b(r1 + r2b · · ·+ rk+1b
k) = s0 + b(s1 + s2b · · ·+ sk+1b

k).

Since r0, s0 ∈ {0, 1, . . . , b − 1} we know that these are the remainders and the bracketed
expressions are the quotients. Thus by uniqueness of remainders we have r0 = s0 and by
uniqueness of quotients we have

r1 + r2b · · ·+ rk+1b
k = s1 + s2b · · ·+ sk+1b

k.

But each of these expressions has coefficients in {0, 1, . . . , b − 1} and highest power k. Since
we have assumed that P (k) is true, it follows that ri = si for all i ∈ {1, . . . , k + 1}.

In summary, we have shown that ri = si for all i ∈ {0, 1, . . . , k + 1}. �

[Remark: For any b ≥ 2 we have proved that every non-negative integer has a unique “posi-
tional base b” representation. You are probability familiar with this result when b = 10. The
modern positional base 10 system was developed in India around 500 AD and spread outward
from there. It was fully adopted in Europe by the 15th century and it was fully adopted in
East Asia by the 19th century.]


