Math 230 Spring 2019
Homework 3 Drew Armstrong

Problem 1. Let a,b € Z. Use the axioms of Z to prove the following properties:

(a) —(-a)=a.
(b) a(—b) = (—a)b = —(ab). [Hint: Multiply both sides of b — b = 0 by a.]
(¢) (—a)(—b) = ab. [Hint: Combine parts (a) and (b).]

(a) By definition of negatives we have
a+(—a)=0 }
= a+(—a)=(—a)+(—(—a)).
{ ettty () = (a) + (~(-a)
Then cancelling (—a) from both sides gives a = —(—a).

(b) For all a,b € Z we have

b+(-b)=0
a(b+ (—=b)) = a0
ab+ a(—b) =0 a0 = 0 from class

ab+ a(=b) = ab+ (—(ab)).
Then cancelling ab from both sides gives a(—b) = —(ab). It also follows that

(—a)b=b(—a) = —(ba) = —(ab).

(c) Finally, combining 1(a) and 1(b) gives

(—a)(=b) = —(a(-D)) 1(b)
—(—(ab)) 1(b)
= ab. 1(a)

Problem 2. Use the axioms of Z to prove the following properties:

(a) Va € Z,(0 < a) & (—a < 0). [Hint: Add something to both sides.]

(b) Va,b,c € Z,(a <bAc<0)= (bc < ac). [Hint: Use 2(a) and 1(b).]

(c) Va,b€ Z,(a#0ANb#0) = (ab# 0). [Hint: There are 4 cases.]

(d) Multiplicative Cancellation. Va,b,c € Z, (ab = ac A a # 0) = (b = ¢). [Hint: If
ab = ac then a(b — ¢) = 0. Use the contrapositive of 2(c).]

(a) First suppose that 0 < a. Then adding —a to both sides gives
0<a
04 (—a) <a+ (—a) axiom (O1)
—a < 0.



Conversely, suppose that —a < 0. Then adding a to both sides gives
—-a <0

—a+a<0+a axiom (O1)
0<a.

(b) We want to prove that (a < bAc¢ < 0) = (bc < ac). So suppose that a < b and ¢ < 0.
From 2(a) this implies that 0 < —c¢ and then axiom (O2) and Problem 1(c) give

a(—c) < b(—c) axiom (O2)
—(ac) < —(bc) 1(c)
Finally, we add ac + bc to both sides to obtain
—(ac) < —(be)
W—F bc < — ¢+ ac
0+bc<0+ac
bc < ac.

(c) We want to prove that (a # 0Ab # 0) = (ab # 0). So assume that a # 0 and b # 0. From
the law of trichotomy there are four cases:

Case 1. If 0 < a and 0 < b then (O2) gives 0 < ab, hence ab # 0.
Case 2. If 0 < a and b < 0 then (O2) gives ab < 0, hence ab # 0.
Case 3. If a < 0 and 0 < b then (O2) gives ab < 0, hence ab # 0.
Case 4. If a < 0 and b < 0 then 2(b) gives 0 < ab, hence ab # 0.

In any case we conclude that ab # 0. For the purpose of 2(d) below, let me state this result
in a logically equivalent form:

(ab=0Aa#0)= (b=0).

(d) We want to prove that (ab = ac A a # 0) = (b = ¢). So assume that ab = ac and a # 0.
Then we have

ab = ab
ab—ac=0
a(b—c) =0.
Finally, since a # 0, part 2(c) implies that (b — ¢) = 0 and hence b = c. O

Problem 3. For all a € Z we assume that /a € R exists. In this problem you will show that

VagZ=+agQ.

(a) Assume that \/a ¢ Z. Prove that there exists m € Z such that m — 1 < /a < m.
[Hint: Let S = {n € Z: y/a < n} and use Well-Ordering.|

(b) Now assume for contradiction that /a € Q and consider the set T := {n > 1:ny/a €
Z}. Use Well-Ordering to show that this set has a least element d € T'. But then show
that d(y/a —m + 1) is a smaller element of 7. Contradiction.



Proof. (a) Assume that \/a € Z and consider the set S = {n € Z : \/a < n}. This set
is non-empty (we don’t really have an axiom to prove this because we never defined the real
numbers) and bounded below (by the number 0; again we can’t really prove this), so the
Well-Ordering Principle says that there exists a smallest element m € S. By minimality of m
we must have m — 1 ¢ S, which implies that \/a £ m — 1, or in other words m —1 < \/a. But
since v/a € Z we know that m — 1 # \/a and hence m — 1 < \/a.

(b) Now consider the set T'= {n > 1 : ny/a € Z} and assume for contradiction that /a € Q.
This means that v/a = p/q for some integers p,q € Z with ¢ > 1. But then ¢/a = p € Z and
we conclude that ¢ € T. Since T is non-empty (it contains ¢) and is bounded below (by 1),
the Well-Ordering Principle says that there exists a smallest element d € T

Now we will obtain a contradiction by producing a strictly smaller element of T. Recall
from part (a) that there exists an integer m € Z with m — 1 < y/a < m. Applying axioms
(O1) and (02) gives
-1 < Vva < m

0 < Va-m+1 < 1

0 < dy/a—m+1) < d.

m

But note that
dva—m+1)=dya—dm—1)€Z because dv/a€Z.

Hence d(y/a—m+ 1) is a positive integer that is strictly smaller than d. Finally, to show that
d(v/a —m+ 1) is an element of T' we observe that

d(va—m+1)ya=da— (m—1)dyVa€Z because dv/ae€Z.

Problem 4. Let a, b, c € Z. Prove the following properties of divisibility:

(a) If a|b and b|c then alc.

(b) If alb and a|c then for all z,y € Z we have a|(bx + cy).
(c) If alb and b|a then a = +b. [Hint: Use 2(d).]

(d) Bonus Material. If a|b and b # 0 then |a| < |b)|.

(a) Suppose that a|b and b|c. By definition this means that ak = b and bl = ¢ for some integers
k,¢ € 7Z. But then we have

c=bl = (ak)l = a(k?),
which implies that a|c because k¢ € Z.
(b) Suppose that a|b and alc. By definition this means that ak = b and al = ¢ for some
integers k, ¢ € Z. Then for all integers x,y € Z we have
bx + cy = (ak)x + (al)y = a(kz) + a(ly) = a(kx + ly),
which implies that a|(bz + cy) becuase kx + ly € Z.

(c) Suppose that a|b and bla. By definition this means that ak = b and b¢ = a for some
integers k,¢ € Z. If a = 0 then there is nothing to prove, so suppose that a # 0. Then from



Problem 2(d) we have

a=0bl

a = (ak)l

a = a(kl)
dl = d(kl)

1=kt

Finally, I claim that the only solutions are k = ¢ = 1 (hence a = b) and k = ¢ = —1 (hence
a = —b). You don’t need to prove this, but I’ll provide a proof. The proof will use the absolute
value notation to save space. Recall that the absolute value is defined by

a if a > 0,
la| =40 ifa=0,
—a ifa <0,

and satisfies |ab| = |a] - |b| for all a,b € Z. [This result follows from the proof of 2(c).]

Proof. If 1 = kl then 1 = |1| = |kl| = |k| - |¢|. I claim that |k| = 1 and hence also |¢| = 1.
To prove this, assume for contradiction that |k| # 1. Then there are two cases:

e Case 1. If |k| < 1 then since |k| > 0 we obtain a contradiction to the fact proved in
class that there are no integers strictly between 0 and 1.

e Case 2. If |k| > 1 then multiplying both sides by the positive number |¢| gives
1=|k|-|£] > |f|. But now |¢| is an integer strictly between 0 and 1. Contradiction.

O

(d) Bonus Material. Let a|b and b # 0. By definition we have ak = b for some k € Z and
since b # 0 we must have a # 0 and k # 0. Since there are no integers between 0 and 1 this
implies that |k| > 1 and then multiplying both sides by the positive integer |a| gives

1< k]
lal < [a] - ¥
la] < [ak
la| < [b].
O

[Remark: We already used this result in class when we proved the uniqueness of quotients and
remainders. |



