
Math 230 Spring 2019
Homework 3 Drew Armstrong

Problem 1. Let a, b ∈ Z. Use the axioms of Z to prove the following properties:

(a) −(−a) = a.
(b) a(−b) = (−a)b = −(ab). [Hint: Multiply both sides of b− b = 0 by a.]
(c) (−a)(−b) = ab. [Hint: Combine parts (a) and (b).]

(a) By definition of negatives we have{
a + (−a) = 0

(−a) + (−(−a)) = 0

}
=⇒ a + (−a) = (−a) + (−(−a)).

Then cancelling (−a) from both sides gives a = −(−a).

(b) For all a, b ∈ Z we have

b + (−b) = 0

a(b + (−b)) = a0

ab + a(−b) = 0 a0 = 0 from class

ab + a(−b) = ab + (−(ab)).

Then cancelling ab from both sides gives a(−b) = −(ab). It also follows that

(−a)b = b(−a) = −(ba) = −(ab).

(c) Finally, combining 1(a) and 1(b) gives

(−a)(−b) = −(a(−b)) 1(b)

= −(−(ab)) 1(b)

= ab. 1(a)

�

Problem 2. Use the axioms of Z to prove the following properties:

(a) ∀a ∈ Z, (0 < a)⇔ (−a < 0). [Hint: Add something to both sides.]
(b) ∀a, b, c ∈ Z, (a < b ∧ c < 0)⇒ (bc < ac). [Hint: Use 2(a) and 1(b).]
(c) ∀a, b ∈ Z, (a 6= 0 ∧ b 6= 0)⇒ (ab 6= 0). [Hint: There are 4 cases.]
(d) Multiplicative Cancellation. ∀a, b, c ∈ Z, (ab = ac ∧ a 6= 0) ⇒ (b = c). [Hint: If

ab = ac then a(b− c) = 0. Use the contrapositive of 2(c).]

(a) First suppose that 0 < a. Then adding −a to both sides gives

0 < a

0 + (−a) < a + (−a) axiom (O1)

−a < 0.



Conversely, suppose that −a < 0. Then adding a to both sides gives

−a < 0

−a + a < 0 + a axiom (O1)

0 < a.

(b) We want to prove that (a < b ∧ c < 0) ⇒ (bc < ac). So suppose that a < b and c < 0.
From 2(a) this implies that 0 < −c and then axiom (O2) and Problem 1(c) give

a(−c) < b(−c) axiom (O2)

−(ac) < −(bc) 1(c)

Finally, we add ac + bc to both sides to obtain

−(ac) < −(bc)

������−(ac) + ac + bc <������−(bc) + bc + ac

0 + bc < 0 + ac

bc < ac.

(c) We want to prove that (a 6= 0∧ b 6= 0)⇒ (ab 6= 0). So assume that a 6= 0 and b 6= 0. From
the law of trichotomy there are four cases:

• Case 1. If 0 < a and 0 < b then (O2) gives 0 < ab, hence ab 6= 0.
• Case 2. If 0 < a and b < 0 then (O2) gives ab < 0, hence ab 6= 0.
• Case 3. If a < 0 and 0 < b then (O2) gives ab < 0, hence ab 6= 0.
• Case 4. If a < 0 and b < 0 then 2(b) gives 0 < ab, hence ab 6= 0.

In any case we conclude that ab 6= 0. For the purpose of 2(d) below, let me state this result
in a logically equivalent form:

(ab = 0 ∧ a 6= 0)⇒ (b = 0).

(d) We want to prove that (ab = ac ∧ a 6= 0) ⇒ (b = c). So assume that ab = ac and a 6= 0.
Then we have

ab = ab

ab− ac = 0

a(b− c) = 0.

Finally, since a 6= 0, part 2(c) implies that (b− c) = 0 and hence b = c. �

Problem 3. For all a ∈ Z we assume that
√
a ∈ R exists. In this problem you will show that

√
a 6∈ Z⇒

√
a 6∈ Q.

(a) Assume that
√
a 6∈ Z. Prove that there exists m ∈ Z such that m − 1 <

√
a < m.

[Hint: Let S = {n ∈ Z :
√
a < n} and use Well-Ordering.]

(b) Now assume for contradiction that
√
a ∈ Q and consider the set T := {n ≥ 1 : n

√
a ∈

Z}. Use Well-Ordering to show that this set has a least element d ∈ T . But then show
that d(

√
a−m + 1) is a smaller element of T . Contradiction.



Proof. (a) Assume that
√
a 6∈ Z and consider the set S = {n ∈ Z :

√
a < n}. This set

is non-empty (we don’t really have an axiom to prove this because we never defined the real
numbers) and bounded below (by the number 0; again we can’t really prove this), so the
Well-Ordering Principle says that there exists a smallest element m ∈ S. By minimality of m
we must have m− 1 6∈ S, which implies that

√
a 6< m− 1, or in other words m− 1 ≤

√
a. But

since
√
a 6∈ Z we know that m− 1 6=

√
a and hence m− 1 <

√
a.

(b) Now consider the set T = {n ≥ 1 : n
√
a ∈ Z} and assume for contradiction that

√
a ∈ Q.

This means that
√
a = p/q for some integers p, q ∈ Z with q ≥ 1. But then q

√
a = p ∈ Z and

we conclude that q ∈ T . Since T is non-empty (it contains q) and is bounded below (by 1),
the Well-Ordering Principle says that there exists a smallest element d ∈ T .

Now we will obtain a contradiction by producing a strictly smaller element of T . Recall
from part (a) that there exists an integer m ∈ Z with m − 1 <

√
a < m. Applying axioms

(O1) and (O2) gives

m− 1 <
√
a < m

0 <
√
a−m + 1 < 1

0 < d(
√
a−m + 1) < d.

But note that

d(
√
a−m + 1) = d

√
a− d(m− 1) ∈ Z because d

√
a ∈ Z.

Hence d(
√
a−m+ 1) is a positive integer that is strictly smaller than d. Finally, to show that

d(
√
a−m + 1) is an element of T we observe that

d(
√
a−m + 1)

√
a = da− (m− 1)d

√
a ∈ Z because d

√
a ∈ Z.

�

Problem 4. Let a, b, c ∈ Z. Prove the following properties of divisibility:

(a) If a|b and b|c then a|c.
(b) If a|b and a|c then for all x, y ∈ Z we have a|(bx + cy).
(c) If a|b and b|a then a = ±b. [Hint: Use 2(d).]
(d) Bonus Material. If a|b and b 6= 0 then |a| ≤ |b|.

(a) Suppose that a|b and b|c. By definition this means that ak = b and b` = c for some integers
k, ` ∈ Z. But then we have

c = b` = (ak)` = a(k`),

which implies that a|c because k` ∈ Z.

(b) Suppose that a|b and a|c. By definition this means that ak = b and a` = c for some
integers k, ` ∈ Z. Then for all integers x, y ∈ Z we have

bx + cy = (ak)x + (a`)y = a(kx) + a(`y) = a(kx + `y),

which implies that a|(bx + cy) becuase kx + `y ∈ Z.

(c) Suppose that a|b and b|a. By definition this means that ak = b and b` = a for some
integers k, ` ∈ Z. If a = 0 then there is nothing to prove, so suppose that a 6= 0. Then from



Problem 2(d) we have

a = b`

a = (ak)`

a = a(k`)

�a1 = �a(k`)

1 = k`.

Finally, I claim that the only solutions are k = ` = 1 (hence a = b) and k = ` = −1 (hence
a = −b). You don’t need to prove this, but I’ll provide a proof. The proof will use the absolute
value notation to save space. Recall that the absolute value is defined by

|a| :=


a if a > 0,

0 if a = 0,

−a if a < 0,

and satisfies |ab| = |a| · |b| for all a, b ∈ Z. [This result follows from the proof of 2(c).]

Proof. If 1 = k` then 1 = |1| = |k`| = |k| · |`|. I claim that |k| = 1 and hence also |`| = 1.
To prove this, assume for contradiction that |k| 6= 1. Then there are two cases:

• Case 1. If |k| < 1 then since |k| > 0 we obtain a contradiction to the fact proved in
class that there are no integers strictly between 0 and 1.
• Case 2. If |k| > 1 then multiplying both sides by the positive number |`| gives

1 = |k| · |`| > |`|. But now |`| is an integer strictly between 0 and 1. Contradiction.

�

(d) Bonus Material. Let a|b and b 6= 0. By definition we have ak = b for some k ∈ Z and
since b 6= 0 we must have a 6= 0 and k 6= 0. Since there are no integers between 0 and 1 this
implies that |k| ≥ 1 and then multiplying both sides by the positive integer |a| gives

1 ≤ |k|
|a| ≤ |a| · |k|
|a| ≤ |ak|
|a| ≤ |b|.

�

[Remark: We already used this result in class when we proved the uniqueness of quotients and
remainders.]


