Math 230 Spring 2019
Homework 1 Drew Armstrong

Problem 1. Here is a picture proof of the Pythagorean theorem:

Your job is to explain the proof at an informal level. For example, imagine that you are
tutoring a high school student. It might be helpful to label the triangle and the three side
lengths, but please don’t use algebra. [Hint: What is the area of the dotted square?]

Explanation. Let a < b < ¢ be the side lengths of the three squares in the tiling. The
squares of sides a and b are solid, while the square of side c is dotted. The tiling contains
many copies of a right triangle with these side lengths. Here are two copies of the triangle:




In the left hand diagram we have cut the two squares with side lengths a and b into five
pieces with areas A, B,C, D, E, so that

>+ =(A+B)+(C+D+E).
But in the right hand diagram we notice that the square of side length ¢ can be cut into the
same five pieces, so that
=A+B+C+D+E=d+b.
O

Problem 2. Proposition 1.5 in Euclid has aquired the name pons asinorum (the “bridge of
asses” or “bridge of fools”). Apparently, many students never got past this point in their
studies. The proposition says the following: Consider a triangle AABC. If the side lengths
AB and AC are equal, then the angles L ABC and £ ACB are equal:

A

AB=AC = 4{ABC =4{ACB

B C
(a) Look up Euclid’s proof of Prop 1.5 and try to understand it.
(b) Write down the proof in your own words. Your goal is to make the proof as

understandable as possible. Maybe you can improve on Euclid.

FEuclid’s Proof of Proposition 1.5. The proof will refer to the following diagram:

Start with the triangle AABC and assume that side lengths AB = AC are equal. First
extend the edge AB to some random point D and extend the edge AC to some random point
E [Postulate 2]. Choose a random point on the segment BD and call it F. [Why are we
allowed to do this? I don’t know.] Now find the point G on the segment AE such that the
lengths AF = AG are equal [Proposition 1.3.] (Here we assumed that the segment AFE is
long enough, but we can always make it longer if necessary.) Draw segments C'F and GB
[Postulate 1]. Now observe that

AF = AG, LAFAC = £GAB, AC = AB.

It follows from Proposition 1.4 [the side-angle-side criterion] that the triangles AACF and
AABG are congruent (i.e., have all angles and side lengths the same). In particular, this
implies that

But now from the congruence of AACF and ANABG we have:
e BF = AF — AB = AG - AC = CQG, [Common Notions 1,3]



o {BFC =A{AFC = LAGB = LCGB, [Common Notion 1]
e CF = BG.
It follows again from Proposition 1.4 [side-angle-side] that triangles ABCF and ACBG are
congruent. In particular, this implies that £ BCF = {CBG. Finally, from Common Notions
1 and 3 we conclude that

LABC = LABG — LCBG = LACF — £BCF = LACB,
as desired. 0

[Remark: Do you see why people find this proof difficult?]

Problem 3. Prove that the interior angles of any (Euclidean) triangle sum to 180°. You may
use the following two facts without proof. Prop I.31: Given a line £ and a point p not on ¢,
it is possible to draw a line through p parallel to . Prop I1.29: If a line falls on two parallel
lines, then the corresponding angles are equal, as in the following figure:

y
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[Hint: Your proof should begin as follows: “Consider a triangle with interior angles a, 3, 7.
We will prove that o + 5 4+ v = 180°.” Now draw the triangle.]

Proof. Consider a triangle with interior angles «, 3, and ~:

A

Q p

We will prove that o + 8 4+ v = 180°.

To do this, we first use Proposition 1.31 to draw a line through the vertex at angle ~ that
is parallel to the opposite side of the triangle. Then after extending the three sides of the
triangle we obtain the following diagram:




The labeled angles § and ¢ are initially unknown to us. However, by applying Proposition
1.29 twice we find that § = o and € = 3. Since ¢, v, and ¢ form a straight line we must have
0 + v+ e = 180°. Finally, we conclude that

a+B+y=06+e+y=180°
as desired. 0

Problem 4. The dot product of the vectors u = (uj,uz) and v = (v1,v2) is defined by
ue v :=uv; + ugvy. The length ||ul| of a vector u satisfies [|[ul|> = ueu.

(a) The vectors u, v, and u — v form the three sides of a triangle. Draw this triangle.
(b) Use algebra (not geometry) to prove that ||[u —v||? = |[u* + ||v]]? — 2(ue V).
(¢) Use the formula from part (b) to prove the following statement:

“the vectors u and v are perpendicular if and only if uev =0.”

[Hint: Remember your picture from part (a). You are allowed to assume that the
Pythagorean Theorem and its converse are true.]

The triangle for part (a) looks like this:

(Since we discussed this in class, I imagine everyone’s picture will look roughly the same.)
Part (b) is simply a computation:

la = v = [[(ur, uz) — (v1,v2)]”

= [ (w1 — 1, up — o)
= (ur —v1)? + (uz — v2)*
= (uf = 2u1v1 +07) + (uj — 2uzv2 +v3)
= (ui + u3) + (0] +v2)® — 2(usvy + ugvy)
= [[ulf® +[|v]* - 2(u e v).
Part (c) asks for a proof, so I'll write it nicely.
Proof. Consider any two vectors u = (u1,v;) and v = (v, v2). We will prove that u and v

are perpendicular (i.e., u L v) if and only if u e v = ujv; + ugvy = 0. Since this is an “if and
only if” statement we must prove each direction separately.

First we will prove that u L v implies ue v = 0. So let us assume that u L v. In this case,
the triangle from part (a) is a right triangle and the Pythagorean Theorem tells us that
2 2 2
o = v = [[uf|* + v
On the other hand, we know from part (b) that

lu = v? = fufl + [[v]* - 2(uev).



Equating these two expressions for |[u — v||? gives

Jhatf® + [t = Jaff” + |t — 2(u o v)
0=—-2(uev)

O=uev,

as desired.

Now we will prove that ue v = 0 implies u L v. So let us assume that ue v =0. Then from
part (b) we have

lu=v* = ul* + [v]* — 2(uev)
= [lul® + [Iv]* - 2(0)
= [ulf* + [Iv]®.

Finally, by applying this fact to the triangle in part (a) we conclude from the converse of the
Pythagorean Theorem that the angle between u and v is 90°. In other words, we conclude
that u L v. (]

Problem 5. Let AC be the diameter of a circle and let B be any other point of the circle.
Then I claim that LABC is a right angle:

(@]

Legend says that this is the oldest theorem in the world, and that it was proved by Thales of
Alexandria in the 6th century BC. You will give a modern (“analytic”) proof.

You can assume that O = (0,0) is at the origin of the Cartesian plane. You can also assume
that A = (—1,0) and C' = (1,0), so the circle has radius 1. Then the point B has the form

—
B = (cos #,sin ) for some angle §. Now use Problem 4 to prove that the vectors BA and

BC' are perpendicular. [Hint: Head minus tail. You may use any trig identities that you
know.|

Proof. Suppose that our circle has radius 1 and is centered at the origin (0,0) in the
Cartesian plane. Suppose that A = (—1,0) and C' = (1,0) and recall that any point B on the
circle has the form B = (cos#,sin @) for some angle . Furthermore, let u = BA and v = B
Then we have the following diagram:



(cos,sinf)

Our goal is to prove that the vectors u and v are pendicular, and from Problem 4 it is enough
to prove that the dot product is zero: uev = 0. To do this we first use the “head minus tail”
rule to observe that

u=(—1,0) — (cosf,sinf) = (=1 — cosf, —sin h),
v = (1,0) — (cos@,sinf) = (1 — cosf, —sin 0).
And recall the identity cos® @ +sin? # = 1, which is just the Pythagorean Theorem in disguise:
1 :
sin ¢
[ |
cos
Finally, from the definition of the dot product we have
uev = (1—cosf,—sinf) e (—cosf —1,—sinb)
= (1 —cosf)(—1 —cosf) + (—sinfh)(—sinb)
= (=1 + cos®6) +sin?0
= —1 + (cos® 0 4 sin? )
=-1+41
=0,
as desired. O



