
Math 230 Fall 2018
Exam 2 — Thurs Oct 25 Drew Armstrong

Problem 1.

(a) Use the Extended Euclidean Algorithm to find one solution x, y ∈ Z of the equation

36x+ 15y = 3.

Consider the following table of triples x, y, z ∈ Z such that 36x+ 15y = z:

x y z row operation
1 0 36 (row 1)
0 1 15 (row 2)
1 −2 6 (row 3) = (row 1)− 2 · (row 2)
−2 5 3 (row 4) = (row 2)− 2 · (row 3)

5 −12 0 (row 5) = (row 3)− 2 · (row 4)

From (row 4) we obtain the solution (x, y) = (−2, 5).

(b) Tell me the general solution x, y ∈ Z of the equation 36x + 15y = 0. [You do not
need to prove anything.]

Divide the equation by gcd(36, 15) (which is 3) to obtain 12x + 5y = 0. Since 12 and
5 are coprime, the general solution is

(x, y) = (5k,−12k) for all k ∈ Z.

This solution can also be obtained from (row 5) above.

(c) Now tell me the general solution x, y ∈ Z of the equation 36x+ 15y = 3.

Adding the solutions from (a) and (b) gives

(x, y) = (−2, 5) + (5k,−12) = (−2 + 5k, 5− 12k) for all k ∈ Z.

Problem 2. Consider a, b, c, x ∈ Z such that a = bx+ c, and define the following sets:

Div(a, b) = {d ∈ Z : d|a and d|b}
Div(b, c) = {d ∈ Z : d|b and d|c}.

(a) Prove that Div(b, c) ⊆ Div(a, b).

Proof. Let d ∈ Div(b, c), so that b = db′ and c = dc′ for some b′, c′ ∈ Z. Then we have

a = bx+ c = (db′)x+ (dc′) = d(b′x+ c′),

which implies that d|a and hence d ∈ Div(a, b). �



(b) Prove that Div(a, b) ⊆ Div(b, c).

Proof. Let d ∈ Div(a, b), so that a = da′ and b = db′ for some a′, b′ ∈ Z. Then we have

c = a− bx = (da′)− (db′)x = d(a′ − b′x),

which implies that d|c and hence d ∈ Div(b, c). �

(c) Use the result of (a) and (b) to prove that gcd(a, b) = gcd(b, c).

Proof. From (a) and (b) we conclude tha Div(a, b) = Div(b, c). Since the sets are equal,
they must have the largest element. �

Problem 3. Division With Remainder.

(a) Accurately state the Division Theorem.

For all a, b ∈ Z with b 6= 0, there exist unique integers q, r ∈ Z such that{
a = qb+ r,
0 ≤ r < |b|.

Remark: These unique q, r are called the quotient and remainder of a mod b.

(b) Explain why 3 is the remainder of 15 mod 6.

Because {
15 = 2 · 6 + 3,
0 ≤ 3 < |6|.

(c) Explain why the equation 15 = 6x has no integer solution x ∈ Z.

Assume for contradiction that such an integer x ∈ Z exists. Then we have{
15 = x · 6 + 0,
0 ≤ 0 < |6|.

Since 0 6= 3 this contradicts the uniqueness of the remainder.

Problem 4. Let α ∈ R be a real number that is not an integer.

(a) Use Well-Ordering to prove that there exists an integer m ∈ Z with m − 1 < α < m.
[Hint: Let S be the set of integers that are greater than α.]

Proof. Let S be the set of integers that are greater than α. By Well-Ordering this set
has a least element, say m. Since m ∈ S we have α < m, and since m−1 < m we have
m− 1 6∈ S, hence m− 1 ≤ α. Finally, since α is not an integer we have m− 1 < α. �



(b) If the integers m,n ∈ Z satisfy m− 1 < α < m and n− 1 < α < n, prove that m = n.
[Hint: Show that m < n leads to a contradiction.]

Proof. Assume for contradiction that m < n. Then we have

n− 1 < α < m < n,

which implies that n− 1 < m < n. This contradicts the fact that there are no integers
between n−1 and n. If you don’t believe that, subtract n−1 to obtain 0 < m−n+1 < 1.
This contradicts the fact that there are no integers between 0 and 1.

The same proof shows that n < m is impossible, so we conclude that m = n. �

[Remark: Putting (a) and (b) together, we conclude that there exists a unique integer m ∈ Z
such that m− 1 < α < m.]


