
Math 230 Fall 2018
Exam 1 — Thurs Sept 20 Drew Armstrong

Problem 1.

(a) State the principle of the contrapositive.

For all statements P,Q we have

(P ⇒ Q) = (¬Q⇒ ¬P ).

(b) State de Morgan’s law.

For all statements P,Q we have

¬(P ∨Q) = ¬P ∧ ¬Q and ¬(P ∧Q) = ¬P ∨ ¬Q.

(c) Explicitly use these two principles to prove for all statements P,Q,R that

P ⇒ (Q ∨R) = (¬Q ∧ ¬R)⇒ ¬P.
Do not use a truth table.

Proof. For all statements P,Q,R we have

P ⇒ (Q ∨R) = ¬(Q ∨R)⇒ ¬P, from (a)

= (¬Q ∧ ¬R)⇒ ¬P. from (b)

Problem 2. Let m,n ∈ Z be any integers.

(a) If either m or n is even, prove that mn is even.

Proof 1. There are two cases. (Case 1) If m is even then we can write m = 2k for some
k ∈ Z. It follows that mn = (2k)n = 2(kn) is even. (Case 2) If n is even then we can
write n = 2` for some ` ∈ Z It follows that mn = m(2`) = 2(m`) is even. �

[Remark: Here I have used the principle (P ∨Q)⇒ R = (P ⇒ R) ∧ (Q⇒ R).]

Proof 2. Without loss of generality, let us assume that m is even. Then we can write
m = 2k for some k ∈ Z and it follows that mn = (2k)n = 2(kn) is even. �

(b) If mn is even prove that either m or n is even. [Hint: 1(c).]

Proof. Consider the statements P =“mn is even,” Q =“m is even” and R =“n is
even.” We are asked to prove that P ⇒ (Q ∨ R), which by 1(c) is equivalent to the
statement (¬Q ∧ ¬R)⇒ ¬P . In other words, we are asked to prove:

“if m and n are both odd then mn is odd.”

So let us assume that m and n are both odd. This means that there exist k, ` ∈ Z such
that m = 2k + 1 and n = 2` + 1. It follows that

mn = (2k + 1)(2` + 1) = 4k` + 2k + 2` + 1 = 2(2k` + k + `) + 1,

which is odd. �



Problem 3.

(a) For integers a, b ∈ Z, state the formal definition of “a|b.”

“ a|b ” = “∃k ∈ Z, ak = b ”

(b) For all n ≥ 1 consider the statement P (n) = “3|(4n − 1).” Prove that P (1) is true.

The statement is P (1) = “3|3.” This statement is true because 3 · 1 = 3 and 1 ∈ Z.

(c) Now consider any positive integer n ≥ 1 and assume for induction that P (n) is true.
In this case prove that P (n + 1) is also true.

Proof. If P (n) is true then there exists k ∈ Z such that 3k = 4n− 1. But then we have

4(3k) = 4(4n − 1)

12k = 4n+1 − 4

12k + 3 = 4n+1 − 1

3(4k + 1) = 4n+1 − 1,

which implies that P (n + 1) is true. �

Problem 4. Consider the followiing statement:

“For all n ∈ Z, if 3 - n then there exists k ∈ Z such that n = 3k + 1.”

(a) Prove that this statement is false.

Proof. I claim that n = 2 is a counterexample. Indeed, we have 3 - 2, but there does
not exist k ∈ Z such that 2 = 3k + 1. In other words, for all k ∈ Z we have 2 6= 3k + 1.
�

(b) Write down the correct version: “ ∀n ∈ Z, if 3 - n then ∃k ∈ Z such that ? ”

n = 3k + 1 or n = 3k + 2.

(c) Use the correct version to prove that for all n ∈ Z we have 3|n2 ⇒ 3|n.

Proof. We will prove the contrapositive statement that 3 - n⇒ 3 - n2 for all n ∈ Z. So
consider any n ∈ Z and assume that 3 - n. From part (b) this means that n = 3k + 1
or n = 3k + 2 for some k ∈ Z. In the first case we have

n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1

and in the second case we have

n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1.

In either case we conclude that 3 - n2. �


