Math 230 E Fall 2013
Homework 3 Solutions Drew Armstrong

Problem 1. Let X and Y be finite sets.

(a) If there exists a surjective function f : X — Y, prove that | X| > |Y].
(b) If there exists an injective function g : X — Y, prove that | X| < |Y].
(c) If there exists a bijective function h : X — Y, prove that | X| = [Y].

[Hint: For parts (a) and (b), for each y € Y let d(y) be the number of arrows pointing to
y € Y. What happens if you sum the numbers d(y) for all y € Y? Recall the definitions
from the course notes.]

Proof. Let X,Y be sets and consider a function f : X — Y. Let d(y) denote the number of
arrows of f pointing to y € Y (this is the same as the number of x € X such that f(x) =y). If
we sum the numbers d(y) over y € Y we get the total number of arrows. Since (by definition)
every element of X has exactly one arrow, this implies that

X =" dy).

yey

For part (a), suppose that f: X — Y is surjective, i.e., that we have d(y) > 1 for ally € Y.

In this case we have
X =Y dw) > S 1=y
yey yeyY

For part (b), suppose that f: X — Y is injective, i.e., that we have d(y) < 1forally € Y. In

this case we have
X|=> dy) <> 1=1Y].
yey yey
For part (c), suppose that f : X — Y is bijective, i.e., that we have d(y) =1 for ally € Y. In

this case we have
X| =) dy)=> 1=|v].
yey yey

O

Problem 2. For all integers a,b € Z with b # 0, we define an abstract symbol “3”. We
declare rules for “multiplying” and “adding” abstract symbols,

a ¢ ac a c ad + be

- == — d -+ ==

b d T ™ 0TI T

and we declare that the abstract symbols ¢ and § are “equal” if and only if ad = bc. Let Q

denote the set of abstract symbols (we call this the system of rational numbers). For all
rational numbers z € Q, prove that x can be expressed as § where a,b € Z have no common
divisor except £1. (We say that the fraction = can be written in “lowest terms”.) [Hint: Let

S be the set of absolute values of all the possible numerators of x:

S::{|a\GN:EIa,bEZsuChthatx:%}gN.

Since = € Q, the set S is not empty, so by Well-Ordering it has a smallest element.]



Proof. Consider a rational number z € Q, and let S be the set of absolute values of all possible
numerators of z. That is, let

a
S = {|a| :Ja,b € Z such that x = 5}

Note that S is a subset of the natural numbers N. Since z € Q, we know that z can be
expressed as a fraction in at least one way, hence S # (). Thus, by the Well-Ordering Principle
S has a smallest element. Call it m € S.

Note briefly that for all a,b € Z with b # 0 we have 5* = . Thus the possible numerators
of x come in positive-negative pairs. Since m € S we conclude that there exists n € Z such
that x = 7. Now we claim that m and n have no nontrivial common divisor, i.e., that
ged(m,n) = 1. To prove this, assume for contradiction that there exists d € Z such that d|m
(say m = dm/), d|n (say n = dn’), and |d| > 1. Then we have

m dm’ m

r = —

n_dn  n’
and we see that m' is also an element of S. But since |d| > 1 we have |m| = |[dm/| = |d||m/| >
|m’|, which contradicts the minimality of m. We conclude that m,n have no common divisor,
thus we have succeeded in writing = in lowest terms. O

Alternative Proof. Consider a rational number x € Q. By definition this means that = = ¢

for some a,b € Z with b # 0. Let d = ged(a,b), with a = da’ and b = db’, so we can write

a dd d
r=- =

body v

We claim that ged(a’,b’) = 1. Indeed, by Bézout’s Identity there exist x,y € Z such that
d = ax + by and then we have

d=ax+ by
d=dadx+ dby
d=d(dz+by)
1=dz+y.

This means that any common divisor of a’ and b also divides 1, hence ged(a’,b') = 1. We
have thus succeeded in expressing = in lowest terms. O

Problem 3. The Division Algorithm 2.12 says that for all a,b € Z with b > 0 there exist
unique q,r € Z such that a = q¢b+r and 0 < r < b. Explicitly use this to prove the following:
For all a,b € Z with b > 0 there exists a unique integer k € Z such that

k§%<k+L

[Note: You must prove both the existence and the uniqueness of k. Don't be a hero; quote the
Division Algorithm. You do not need to reduce everything to the axioms.]



Proof. First we will prove that existence of k € Z. Applying the Division Algorithm to divide
a by b yields a = gb + r with 0 <r < b. Then we have
0<r<bd
0<a—qgb<bd
gb<a<b+qgb

a
We may now take k = q.

Next we will show that this & is unique. That is, suppose that we have k3 < 7 < k1 +1
and ko < % < ko + 1. We want to show that k; = k. By reversing the steps above we have

<Lk +1

b
kib<a<kib+b
0<a-—kb<hb.

If we let 1 := a — k1b then we have a = k1b + rqy with 0 < r1 < b. Similarly, if we let
ro := a — kob then we have a = kab + 75 with 0 < r9 < b. By the uniqueness part of the
Division Algorithm this implies that k1 = ks, as desired. O

Problem 4. How do — and x interact? Prove the following exercises using the axioms
of Z from the handout. It will save time if you assume the Cancellation Property that was
proved on the previous homework: V a,b,c € Z, (a+b=a+c) = (b=c).

(a) Prove that for all a € Z we have 0a = 0.

(b) Recall that —n is the unique integer such that n+ (—n) = 0. Prove that for all a,b € Z
we have (—a)b = —(ab). [Hint: You will need part (a).]

(c) Prove that for all a,b, c € Z we have a(b — ¢) = ab — ac. [Hint: Use part (b).]

(d) Prove that for all a,b € Z we have (—a)(—b) = ab. [Hint: Use part (a) to show that
ab + a(—b) = 0 and then use part (b). Note that —(—n) = n for all n € Z.]

[Now if a child asks you why negative times negative is positive, you will know what to say.]

Proof. 1 will apply the commutative axioms (A1) and (M1) when needed, without comment.
To prove (a) first note that 0 = 0+ 0 by axiom (A3). Then we have

0=0+0,
Oa = (0 + 0)a,
0a = 0a + Oa, (D)
0+ 0a = 0a + Oa. (A3)

Cancelling Oa from the final equation gives 0 = 0a. To prove (b), recall that —(ab) is the
unique integer x such that ab+ x = 0. Thus we need to show that ab + (—a)b = 0. Indeed,
we have

ab+ (—a)b = (a + (—a))b, (D)
= 0b, (43)
=0. by part (a)



To prove (c) note that
a(b—¢) = a(b+ (=¢)),

=ab+ a(—c), (D)
= ab + (—(ac)), by part (b)
= ab — ac.

Finally, to prove (d) first note that

ab+ a(=b) = a(b+ (-b)), (D)
= a0, (A3)
=0. by part (a)

This means that ab is the additive inverse of a(—b), i.e. ab = —(a(—b)). Recall that the result
of part (b) says that —(xy) = (—x)y for all z,y € Z. We apply this with z = a and y = —b to
conclude that



