
Math 230 E Fall 2013
Homework 2 Drew Armstrong

Problem 1. Practice with the axioms of Z. For the following exercises I want you to
give Euclidean style proofs using the axioms of Z from the handout. That is, don’t assume
anything and justify every tiny little step.

(a) Given integers a, b, c ∈ Z with a + b = a + c, prove that b = c. This is called the
cancellation property of Z. [Hint: First apply axiom (A4) to the integer a.]

(b) Axiom (A3) says that for each integer a ∈ Z there exists another integer b ∈ Z such
that a + b = 0 (and we call this b an “additive inverse” of a). Prove that additive
inverses are unique. That is, show that if a + b = 0 and a + c = 0 then b = c. [Hint:
Use part (a).]

Proof. To prove (a), consider integers a, b, c ∈ Z such that a+ b = a+ c. By (A4) there exists
some d ∈ Z such that a + d = 0. Then we have

a + b = a + c,

b + a = c + a, (A1)

(b + a) + d = (c + a) + d, (don’t worry about it)

b + (a + d) = c + (a + d), (A2)

b + 0 = c + 0, (property of d)

0 + b = 0 + c, (A1)

b = c. (A3)

[Oops. The second step there was actually a bit tricky. Don’t worry about it.] To prove (b),
consider an integer a ∈ Z and suppose that there exist b, c ∈ Z such that a + b = 0 = a + c.
Since a + b = a + c, the cancellation proprty from part (a) says that b = c. �

[Since the additive inverse of a is unique, we might as well give it a name. How about “−a”?]

Problem 2. For each integer a ∈ Z we define the absolute value:

|a| :=

{
a if a ≥ 0

−a if a < 0

(a) Prove that for all integers a, b ∈ Z we have |ab| = |a||b|. [Hint: You may assume the
properties (−a)(−b) = ab and (−a)b = −(ab) without proof. We’ll prove them later.]

(b) Given integers a, b ∈ Z we say that a divides b (and we write a|b) if there exists q ∈ Z
such that b = qa. If a|b and b 6= 0, prove that |a| ≤ |b|. [Hint: If q 6= 0 note that
|q| ≥ 1. Now use part (a).]

Proof. To prove (a), consider two integers a, b ∈ Z. If a or b is zero then we have |ab| = 0 =
|a||b|, so assume that a and b are both nonzero. Now there are four cases:

• If a > 0 and b > 0 then we have ab > 0, hence

|ab| = ab = |a||b|.



• If a < 0 and b > 0 then we have ab < 0, hence

|ab| = −(ab) = (−a)b = |a||b|.

• If a > 0 and b < 0 then we have ab < 0, hence

|ab| = −(ab) = a(−b) = |a||b|.

• If a < 0 and b < 0 then we have ab > 0, hence

|ab| = (−a)(−b) = ab = |a||b|.

To prove (b) suppose that a|b (say, b = qa) with b 6= 0. Since b 6= 0 we also have q 6= 0,
and since q is an integer this implies |q| ≥ 1. (Strictly speaking, we probably need the Well-
Ordering Axiom to prove that, but we won’t bother.) Multiplying both sides of the inequality
|q| ≥ 1 by the non-negative |a| gives |q||a| ≥ |a|. Finally, use part (a) to conclude that

|b| = |q||a| ≥ |a|.

�

Problem 3. Prove that
√

3 is not a ratio of whole numbers, in two steps.

(a) First prove the following lemma: Given a whole number n, if n2 is a multiple of 3,
then so is n. [Hint: Use the contrapositive, and note that there are two different ways
for n to be not a multiple of 3. Treat each separately.]

(b) Use the method of contradiction to prove that
√

3 is not a ratio of whole numbers.
Quote your lemma in the proof. [Hint: Mimic the proof for

√
2 as closely as possible.]

Lemma: If n2 is a multiple of 3 then so is n.

Proof. We will prove the contrapositive statement — that if n is not a multiple of 3 then
neither is n2 — which is logically equivalent. So suppose that n is not a multiple of 3. There
are two cases: (1) If n = 3k+1 for some k, then n2 = (3k+1)2 = 9k2+6k+1 = 3(3k2+2k)+1
is not a multiple of 3. (It leaves remainder 1 when divided by 3.) (2) If n = 3k + 2 for some
k, then n2 = (3k + 2)2 = 9k2 + 12k + 4 = 9k2 + 12k + 3 + 1 = 3(3k2 + 4k + 1) + 1 is also not
a multiple of 3. �

[Here we implicitly used the Division Algorithm to conclude that every integer n ∈ Z is of the form
3k + 0, 3k + 1, or 3k + 2 for some k ∈ Z.]

Theorem:
√

3 is not a ratio of whole numbers.

Proof. Suppose for contradiction that
√

3 = a/b for whole numbers a, b. After dividing out
common factors we may assume that a and b have no common factor (other than ±1). Square
both sides to get 3 = a2/b2 and then multiply by b2 to get a2 = 3b2. Since a2 is a multiple
of 3 the Lemma implies that a = 3k for some k. But then 3b2 = a2 = 9k2 and dividing by
3 gives b2 = 3k2. The Lemma now implies that b is a multiple of 3. To summarize, we have
shown that a and b are both divisible by 3, but this contradicts the fact that a, b have no
common factor. Hence our original assumption — that

√
3 is a ratio of whole numbers —

must be false. �



[When we assumed that we could write a/b in “lowest terms”, we were implicitly using the Well-
Ordering Axiom to tell us that the process of dividing out common factors would stop in finite
time.]

Problem 4. In this exercise you will show that all of Boolean logic can be expressed using
only the concepts NOT and ⇒. We use the symbol ≡ to denote logical equivalence.

(a) Use a truth table to show that “P OR Q” ≡ “(NOT P )⇒ Q”.
(b) Use a truth table to show that “P AND Q” ≡ “NOT(P ⇒ (NOT Q))”.
(c) Write the statement P ⇔ Q using only the symbols P , Q, NOT and ⇒ (and, of

course, parentheses).

Proof. For part (a) we have the following truth table:

P Q P OR Q NOTP (NOTP )⇒ Q
T T T F T
T F T F T
F T T T T
F F F T F

For part (b) we have the following truth table:

P Q P AND Q NOTQ P ⇒ (NOTQ) NOT (P ⇒ (NOTQ))
T T T F F T
T F F T T F
F T F F T F
F F F T T F

Now we turn to part (c). By definition we have “P ⇔ Q” ≡ “(P ⇒ Q) AND (Q ⇒ P )”.
Finally, applying part (b) gives

“P ⇔ Q” ≡ “(P ⇒ Q) AND (Q⇒ P )”

≡ “NOT ((P ⇒ Q)⇒ (NOT (Q⇒ P )))”.

�

[This problem shows that it’s possible to discuss logic without ever using the words OR or AND.
It doesn’t mean that we want to; it just means that it’s possible.]


