
Math 230 D Fall 2012
Homework 6 Drew Armstrong

Problem 1. For each integer n ≥ 0, let P (n) be the statement: “any set of size n has 2n

subsets.” Use induction to prove that P (n) is true for all n ≥ 0. [Hint: Let A be an arbitrary
set of size n and let x ∈ A be some fixed element. Then every subset of A either contains x
or does not. How many subsets are there of each type? [Hint: By induction, there are 2n−1

subsets of A that do not contain x, since these are just the subsets of A \ {x}. Show that
there are also 2n−1 subsets that do contain x.]]

Proof. We wish to show that P (n) = T for all n ≥ 0. First note that P (0) = T because there
is only one set of size 0 — the empty set ∅ — and it has exactly 20 = 1 subset — itself. Now
fix an arbitrary k ≥ 0 and (OPEN MENTAL PARENTHESIS. suppose that P (k) = T . In
this case we wish to show that P (k + 1) = T . So let A be an arbitrary set of size k + 1 and
fix some element x ∈ A. Each subset of A either contains x or does not. The subsets of A
that do not contain x are precisely the subsets of A \ {x}, and since P (k) = T we know there
are 2k of these. On the other hand, for each subset of A that does not contain x there is
a unique subset that does — namely, we just add x. Hence there are also 2k of these. We
conclude that A has 2k + 2k = 2 · 2k = 2k+1 subsets, hence P (k + 1) = T . CLOSE MENTAL
PARENTHESIS.) We have shown that P (0) = T and P (k) ⇒ P (k + 1) for all k ≥ 0. By
induction we conclude that P (n) = T for all n ≥ 0. �

Problem 2.
(a) Let a, b, c ∈ Z with gcd(a, b) = 1. If a|c and b|c, prove that ab|c. [Hint: Use Bézout to

write ax + by = 1 and multiply both sides by c.]
(b) In class we proved Fermat’s little Theorem, which says that if p ∈ Z is prime and

gcd(a, p) = 1 (i.e. if p doesn’t divide a), then we have ap−1 = 1 mod p. To apply this
to cryptography we need a slightly more general result:

Given integers a, p, q ∈ Z with p and q prime and with gcd(a, pq) = 1 (i.e.
with p6 | a and q6 | a), we have a(p−1)(q−1) = 1 mod pq.

Prove this result. [Hint: You may assume Fermat’s little Theorem. First prove that q

divides a(p−1)(q−1) − 1. The same argument works for p. Then use part (a).]

Proof. To prove (a) suppose that a|c and b|c (say c = ak and c = b`) with a, b coprime. By
Bézout, there exist integers x, y ∈ Z such that ax + by = 1. Multiply both sides by c to get

ax + by = 1

(ax + by)c = c

axc + byc = c

axb` + byak = c

ab(x` + yk) = c,

hence ab|c. To prove (b) consider a, p, q ∈ Z with p and q prime and with gcd(a, pq) = 1
(i.e. with p6 | a and q 6 | a). We wish to show that pq divides a(p−1)(q−1) − 1. To see this, first
note that q does not divide ap−1 since if it did then q would also divide a (by the Extended
Euclid’s Lemma HW5.2), contradiction. Hence by Fermat’s little Theorem we conclude that
q divides (ap−1)q−1− 1 = a(p−1)(q−1)− 1. Similarly we see that p divides a(p−1)(q−1)− 1. Then
since p and q are coprime (indeed, they are both prime), part (a) implies that pq divides
a(p−1)(q−1) − 1, as desired. �



[I agree, it doesn’t seem that this should be the foundation of modern cryptography, but it is.]

Problem 3. Use the Binomial Theorem to prove the following:
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= n2n−1 for all n ≥ 1.

[Hint: The proofs are one-liners. What is the derivative d
dx of (1 + x)n?]

Proof. Recall the Binomial Theorem:
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Since this is an equation of polynomials, it remains true if we substitute any value for x.
Putting x = 1 in equation (1) yields
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and putting x = −1 in equation (1) yields
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We may also differentiate equation (1) by x to get another equation of polynomials:
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Then putting x = 1 in equation (2) yields
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Problem 4. Note that we can write(
n

k

)
=
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=
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k!
,

where (n)k := n(n− 1) · · · (n− (k − 1)). Why would we do this? Because the expression (z)k

makes sense for any positive integer k and any complex number z ∈ C. Thus we can define(
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)
:= (z)k/k! for any k ∈ N and z ∈ C. Prove that for all n, k ∈ N we have(
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Proof. Let n, k ∈ N be positive integers. Then we have(
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[One could alternatively show that
(−n

k

)
satisfies the correct recurrence and initial conditions.]

Problem 5. Let x, z ∈ C be complex numbers with |x| < 1. Newton’s Binomial Theorem says
that

(1 + x)z = 1 +
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where the right hand side is a convergent infinite series. Use this to obtain an infinite series
expansion of (1 + x)−2 when |x| < 1. [Hint: Apply Problem 4.]

By Problem 4, we know that(
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(
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for all k ∈ N. Then for any x ∈ C with |x| < 1, Newton tells us that
1

(1 + x)2
= 1− 2x + 3x2 − 4x3 + · · · =

∑
k≥0

(−1)k(k + 1)xk,

where the infinite series on the right is convergent. We could alternatively get this by differ-
entiating the well-known geometric series

1
1 + x

= 1− x + x2 − x3 + x4 − · · · .

What do you get if you integrate the geometric series? Answer:

log(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · · .

The geometric series is useful.


