Math 230 D Fall 2012
Homework 6 Drew Armstrong

Problem 1. For each integer n > 0, let P(n) be the statement: “any set of size n has 2"
subsets.” Use induction to prove that P(n) is true for all n > 0. [Hint: Let A be an arbitrary
set of size n and let x € A be some fixed element. Then every subset of A either contains x
or does not. How many subsets are there of each type? [Hint: By induction, there are 27!
subsets of A that do not contain z, since these are just the subsets of A\ {z}. Show that
there are also 2" 7! subsets that do contain x.]]

Proof. We wish to show that P(n) =T for all n > 0. First note that P(0) = T" because there
is only one set of size 0 — the empty set () — and it has exactly 20 = 1 subset — itself. Now
fix an arbitrary £ > 0 and (OPEN MENTAL PARENTHESIS. suppose that P(k) = T. In
this case we wish to show that P(k+ 1) = T. So let A be an arbitrary set of size k + 1 and
fix some element © € A. Each subset of A either contains = or does not. The subsets of A
that do not contain z are precisely the subsets of A\ {z}, and since P(k) =T we know there
are 2F of these. On the other hand, for each subset of A that does not contain z there is
a unique subset that does — namely, we just add z. Hence there are also 2* of these. We
conclude that A has 2% + 2% = 2. 2% = 2#+1 gubsets, hence P(k + 1) = T. CLOSE MENTAL
PARENTHESIS.) We have shown that P(0) = T and P(k) = P(k+ 1) for all £ > 0. By
induction we conclude that P(n) =T for all n > 0. O

Problem 2.

(a) Let a,b,c € Z with ged(a,b) = 1. If a|c and b|c, prove that ab|c. [Hint: Use Bézout to
write ax + by = 1 and multiply both sides by c.]

(b) In class we proved Fermat’s little Theorem, which says that if p € Z is prime and
ged(a,p) = 1 (i.e. if p doesn’t divide a), then we have a?~! = 1 mod p. To apply this
to cryptography we need a slightly more general result:

Given integers a,p,q € Z with p and ¢ prime and with ged(a,pq) = 1 (i.e.
with pfa and ¢fa), we have aP~1(@=1) =1 mod pq.
Prove this result. [Hint: You may assume Fermat’s little Theorem. First prove that ¢
divides a»~1(@=1) _ 1, The same argument works for p. Then use part (a).]

Proof. To prove (a) suppose that a|c and b|c (say ¢ = ak and ¢ = bf) with a,b coprime. By
Bézout, there exist integers x,y € Z such that ax 4+ by = 1. Multiply both sides by ¢ to get

ar+by=1

(ax +by)c=c

axc+byc=c

axbl + byak = c

ab(xl + yk) = c,
hence able. To prove (b) consider a,p,q € Z with p and ¢ prime and with ged(a,pq) = 1
(i.e. with pfa and qfa). We wish to show that pg divides P~ — 1. To see this, first
note that ¢ does not divide a?~! since if it did then ¢ would also divide a (by the Extended
Euclid’s Lemma HW5.2), contradiction. Hence by Fermat’s little Theorem we conclude that
q divides (a?~1)?71 —1 = @P=1@=1) _ 1. Similarly we see that p divides a?~1(@=1) — 1. Then
since p and ¢ are coprime (indeed, they are both prime), part (a) implies that pg divides
a®~Da=1) _ 1 ag desired. O



[I agree, it doesn't seem that this should be the foundation of modern cryptography, but it is.]

Problem 3. Use the Binomial Theorem to prove the following;:
)—I——i—(Z) =2" for all n > 1.

)=+ (=1)"(") =0 for all n > 1.

) + 1(’;) + 2(3) 4+ —I—n(Z) =n2"1 for all n > 1.

[Hint: The proofs are one-liners. What is the derivative - of (14 z)"7]

Proof. Recall the Binomial Theorem:

1) <1+x>n:(g)+(T)x+<g>x2+..'+<g>xn.

Since this is an equation of polynomials, it remains true if we substitute any value for z.
Putting x = 1 in equation (1) yields

n n n n
on _ .
() () ()= ()
and putting z = —1 in equation (1) yields

o= =(0) () (3) ()

We may also differentiate equation (1) by x to get another equation of polynomials:

2) n(1+:c)"_120<g>+1(7;)+2<Z>x+--~+n<2>x"‘l.

Then putting z = 1 in equation (2) yields

et =of) 1 1(3) ) )

Problem 4. Note that we can write

(Z) - k!(nni I (TJ:)vk

where (n); :=n(n—1)---(n— (k—1)). Why would we do this? Because the expression (z)j
makes sense for any positive integer k and any complex number z € C. Thus we can define
(%) = (2)r/k! for any k € N and z € C. Prove that for all n,k € N we have

(7) = (")




Proof. Let n,k € N be positive integers. Then we have

() = e - miom o on= )y o(on s 1)

k k! k!
D)) 2) ot (5= 1)
k!
:(_1)k(n+k—1)(n—|—k:—2)---(n+2)(n+1)(n)
k!
B n+k—1r n+k—1
N At

[One could alternatively show that (7]:) satisfies the correct recurrence and initial conditions.]

Problem 5. Let 2,z € C be complex numbers with |z| < 1. Newton's Binomial Theorem says

that
L z z 2 z 3 oo
(1+w) —1+<1>x+<2>x +<3>x +

where the right hand side is a convergent infinite series. Use this to obtain an infinite series
expansion of (14 x)~2 when |z| < 1. [Hint: Apply Problem 4.]

By Problem 4, we know that

(¢) = () e () -

for all k € N. Then for any « € C with || < 1, Newton tells us that

1
=12 +32 —4d® 4 = > (~)F(k + 1ot
2 )
(1+z) =

where the infinite series on the right is convergent. We could alternatively get this by differ-
entiating the well-known geometric series

1 .
— =l-az+a? -2t
14+
What do you get if you integrate the geometric series? Answer:
2 3 4
T x x

log(1 =r— — 4+ ———4---.
og(l+z)=uw s T3 T

The geometric series is useful.



