Math 230 D Fall 2012
Homework 5 Drew Armstrong

Problem 1. Recall that a = b mod n means that n|(a — b). Use induction to prove that for
all n > 2, the following holds:

“ifay,as,...,a, € Z such that each a; = 1 mod 4, then ajas - --a, = 1 mod 4.”

[Hint: Call the statement P(n). Note that P(n) is a statement about all collections of n
inegers. Therefore, when proving P(k) = P(k+ 1) you must say “Assume that P(k) =T and
consider any ai,ag,...,ar+1 € Z.” What is the base case?|

Proof. Let P(n) be the statement: “For any collection of n integers aj,as,...,a, € Z such
that a; = 1 mod 4 for all 1 <i < n, we have ajas---a, = 1 mod 4.” Note that the statement
P(2) is true, since given any aj,as € Z with a; = 4k; + 1 and ag = 4ko + 1, we have

aijag = (4k1 + 1)(4]@ + 1) = 16k1ky + 4(/€1 + ]{?2) +1= 4(4k‘1k2 + k1 + kg) + 1.

Now assume that the statement P(k) is true for some (fixed, but arbitrary) & > 2. In this
case, we wish to show that P(k + 1) is also true. So consider any clollection of k + 1 integers
a1,G2,...,05+1 € Zsuch that a; = 1 mod 4 for all 1 <i < k41, and then consider the product
ajag - - aprq. If we let b = ajag - - - ag, then since P(k) is true, we know that b = 1 mod 4.
But then since P(2) is true we have

ajaz---age1 = bag11 =1 mod 4,

as desired. By induction, we conclude that P(n) is true for all n > 2. O

[I left some of the logical parentheses to the imagination. Do you know where they should be?]

Problem 2. Use induction to prove that for all integers n > 2 the following statement holds:
“If p is prime and p|ajasg - - - a, for some integers ai,as,...,a, > 2, then there exists i such
that p|a;.” [Hint: Call the statement P(n). Use Euclid’s Lemma for the induction step. You
don’t need to prove it again. In fact, there’s no new math in this problem; just setting up
notation and not getting confused.]

Proof. Let P(n) be the statement: “For any collection of n integers a1, as, ..., a, € Z and any
prime number p € Z, if p divides the product a; - - - a,, then there exists some 1 < i < n such
that p divides a;.” Note that P(2) is exactly Euclid’s Lemma, which is true. Now assume
that the statement P(k) is true for some (fixed, but arbitrary) k& > 2. In this case, we wish to
show that P(k + 1) is also true. So consider any collection of k 4 1 integers aq,...,ax+1 € Z,
let p € Z be any prime number, and suppose that p divides aj - - - ag41. If we let b=a;---ag
then since p|bagi1, Euclid’s Lemma says that p|agy1, in which case we're done, or plb. But
if p|b then since P(k) is true there exists some 1 < i < k such that p|a;. In any case, there
exists some 1 < j < k+ 1 such that p|a;, hence P(k + 1) is true. By induction, we conclude
that P(n) is true for all n > 2. O

[Again, | went for style over absolute precision. | think you're ready for it.]

Problem 3. Use induction to prove that for all integers n > 1 we have
44134_23_’_33_’___._1_”3: (1+2++n>277

This result appears in the Aryabhatiya of Aryabhata (499 CE, when he was 23 years old).
[Hint: You may assume the result 1 4+2+---+n=mn(n+1)/2]



Proof. Let P(n) be the statement:
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Note that the statment P(1) is true since 13 = (12 -22)/4. Now assume that P(k) is true for
some (fixed, but arbitrary) & > 1. That is, assume 13 4+ 23 + ... + k3 = k?(k + 1)2/4. In this
case, we wish to show that P(k + 1) is also true. Indeed, we have
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hence P(k + 1) is true. By induction we conclude that P(n) is true for all n > 1. O

Problem 4. Consider the following two statements/principles.

PSI: If P: N — {T, F} is a family of statements satisfying

e P(1)=1T, and

o for any k > 1 we have [P(1) =P(2)=---=P(k)=T]= [P(k+1)=T].
then P(n) =T for all n € N.

WO: Every nonempty subset K C N = {1,2,3,...} has a least element.

Now Prove that PSI = WO. [Hint: Assume PSI and show that the (equivalent) contrapos-
itive of WO holds; i.e., that if K C N has no least element then K = (). To do this you can
use PSI to show that the complement K¢ is all of N. Let P(n) be the statement “n € K¢”
and show using PSI that P(n) =T for all n € N/]

Proof. We wish to show that PSI = WO. So (OPEN MENTAL PARENTHESIS. assume that
PSI holds. In this case we wish to show that WO holds. We will do this by showing the
contrapositive statement: that if K C N has no least element then K = . So (OPEN
MENTAL PARENTHESIS. suppose that K C N has no least element. In this case we wish
to show that K = (). We will use PSI (which is true in this universe) to prove the equivalent
statement K¢ = N. So let P(n) = “n € K¢”. We wish to show that P(n) = T for all
n € N. First note that 1 € K€ since otherwise 1 € K would be the least element of K,
which contradicts our assumption that K has no least element. Next, fix an arbitrary £k € N
and (OPEN MENTAL PARENTHESIS. suppose that P(1) = P(2) = --- = P(k) = T} i.e.
suppose that 1,2,...,k € K¢ In this case we wish to show that P(k + 1) = T i.e. that
k+1 € K¢ But this is true because otherwise k + 1 € K is the least element of K (since by
assumption 1,2,...,k ¢ K) which contradicts our assumption that K has no least element.
Hence P(k + 1) = T. CLOSE MENTAL PARENTHESIS.) We have shown that P(1) = T
and that P(1) = --- = P(k) = T implies P(k + 1) = T for all £k € N. By the PSI we



conclude that P(n) =T for all n € N. In other words, K¢ =N, or K = (. CLOSE MENTAL
PARENTHESIS.) We conclude that WO holds. CLOSE MENTAL PARENTHESIS.) Hence
PSI = WO. O

Problem 5. Let d(n) be the number of binary strings of length n that contain no consecutive
1’s. For example, there are 5 such strings of length 3:

000, 100, 010, 001, 101.

Hence d(3) = 5. Prove that d(n) are (essentially) the Fibonacci numbers, and hence give a
closed formula for d(n). [Hint: First show that d(n) = d(n— 1)+ d(n —2) for all n > 3. [Hint:
The first digit (actually, bit) of a string can be either 1 or 0.] Then use PSI.]

First we will prove a Lemma: We have d(n) = d(n — 1) + d(n — 2) for all n > 3.

Proof. We wish to count the binary strings of length n with no consecutive 1’s. There are
two cases: The first bit is either 0 or 1. If the first bit is 0, then the remaining n — 1 bits
can be any string that avoids consecutive 1’s, and by definition there are d(n — 1) of these.
If the first bit is 1, then the second bit must be 0 (otherwise the first two bits are 11).
After this there are by definition d(n — 2) ways to complete the string. We conclude that
d(n) =d(n—1)+d(n—2). O
Now we prove the theorem.

Proof. Recall that the Fibonacci numbers are defined by f(0) = 0, f(1) = 1, and f(n) =
fn—=1)+ f(n—2) for all n > 2. We wish to show that d(n) = f(n + 2). So let P(n) =
“d(n) = f(n+2)”. One can check that P(1) = P(2) = T (and we even know P(3) = T,
though we don’t need it). Now fix an arbitrary £ > 3 and (OPEN MENTAL PARENTHESIS.
assume that P(n) =T for all 1 <n < k. In this case we wish to show that P(k+ 1) =T} i.e.
that d(k 4+ 1) = f(k + 3). By assumption we have d(k) = f(k+2) and d(k — 1) = f(k + 1).
Then applying the Lemma gives
d(k +1) = d(k) +d(k — 1)

=flk+2)+ f(k+1)

= f(k+3).
Hence P(k + 1) = T. CLOSE MENTAL PARENTHESIS.) We have shown that P(1) =
P(2) =T andif P(n) =T forall 1 <n < k then P(k+1) = T. By (strong, I guess) induction
we conclude that P(n) =T for all n > 1. O

Based on a result from class, we have the following.

Corollary: For all n > 1, we have

s n+2
d(”)Zf(nJrz):\}5 <1+2\/5) _(1_2\/5>




