Problem 1. In the *Lilavati*, the Indian mathematician Bhaskara (1114–1185) gave a one-word proof of the Pythagorean theorem. He said: **"Behold!"**

Add words to the proof. Your goal is to persuade a high school student who claims he/she doesn't "get it". Avoid algebra if possible. (Sorry, the two pictures are not quite to scale.) [Hint: The dotted line is not in Bhaskara's figure. I added it as a suggestion.]

Problem 2. Prove that the interior angles of any triangle sum to 180° . You may use the following two facts without justification. Fact 1: Given a line ℓ and a point p not on ℓ , it is possible to draw a line through p parallel to ℓ . Fact 2: If a line falls on two parallel lines, then the corresponding angles are equal, as in the following figure.

Problem 3. Prove that $\sqrt{3}$ is not a fraction, in two steps.

- (a) First **prove** the following lemma: Given a whole number n, if n^2 is a multiple of 3, then so is n. [Hint: Use the contrapositive, and note that there are two ways for n to be "**not** divisible" by 3.]
- (b) Use the method of contradiction to **prove** that $\sqrt{3}$ is not a fraction. Quote your lemma in the proof.

Problem 4. Use the 2D Pythagorean Theorem to prove the 3D Pythagorean Theorem. That is, prove that the distance between points (0,0,0) and (x, y, z) equals $\sqrt{x^2 + y^2 + z^2}$. [Hint: There are two triangles involved.]

Problem 5. The dot product of vectors $\mathbf{u} = (u_1, u_2, \ldots, u_n)$ and $\mathbf{v} = (v_1, v_2, \ldots, v_n)$ is defined by $\mathbf{u} \cdot \mathbf{v} := u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$. The length $\|\mathbf{u}\|$ of a vector \mathbf{u} is defined by $\|\mathbf{u}\|^2 := \mathbf{u} \cdot \mathbf{u}$.

- (a) Prove the formula $\|\mathbf{u} \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 2(\mathbf{u} \cdot \mathbf{v}).$
- (b) Use this formula together with the 2D Pythagorean Theorem **and its converse** to prove the following statement:

"the vectors \mathbf{u} and \mathbf{v} are perpendicular if and only if $\mathbf{u} \cdot \mathbf{v} = 0$." [Hint: Where is the triangle?]