1. Rounding Error. Your friend has a list of ten real numbers, whose values are unknown to you: $x_1, \ldots, x_{10} \in \mathbb{R}$. Your friend rounds each number to the nearest integer and sends you the results: $X_1, X_2, \ldots, X_{10} \in \mathbb{Z}$. We will assume that $X_i = x_i + U_i$, where each U_i is a uniform random variable on the interval [-1/2, 1/2].

- (a) Compute $E[U_i]$ and $Var(U_i)$.
- (b) Consider the sum of the rounded numbers $X = X_1 + \cdots + X_{10}$ and the sum of the unrounded numbers $x = x_1 + \cdots + x_{10}$. Prove that E[X] = x.
- (c) Assuming that the random variables U_i are independent, use the CLT to estimate the probability that |X - x| > 1/2. [Hint: The CLT says that $X - x = U_1 + \cdots + U_{10}$ is approximately normal. You just need to compute E[X - x] and Var(X - x).]
- **2.** Tail Probabilities. Consider a standard normal variable $Z \sim N(0, 1)$. Solve for a.
 - (a) P(Z > a) = 93%
 - (b) P(Z < a) = 35%
 - (c) P(|Z| > a) = 2%
 - (d) P(|Z| < a) = 80%

3. A Bernoulli Hypothesis Test. A six-sided die has sides labeled {1, 2, 3, 4, 5, 6}. Let p be the probability of getting a 6. Before performing any experiments we will assume that $H_0 = p^{*} = 1/6$ is true. Now suppose that you roll the die 600 times and let Y be the number of times you get 6. Which values of Y would cause you to reject H_0 in favor of $H_1 = p > 1/6$ " at the 99% level of confidence? That is, what is the rejection region?

4. Confidence Intervals for a Proportion. Let p be the proportion of Americans who are left-handed. In order to estimate p, we randomly selected n = 1000 Americans and we found that Y = 125 of them are left-handed. Use this information to compute two-sided, symmetric $(1 - \alpha)100\%$ confidence intervals for p when $\alpha = 5\%$, 2.5% and 1%.

5. Sample Variance. Consider an iid sample X_1, \ldots, X_n with unknown mean μ and unknown variance σ^2 . In order to estimate σ^2 we define the sample variance as follows:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2},$$

where $\overline{X} = (\sum_{i=1}^{n} X_i)/n$ is the usual sample mean.

- (a) Show that $\sum_{i=1}^{n} (X_i \overline{X})^2 = (\sum_{i=1}^{n} X_i^2) n\overline{X}^2$. [Hint: $n\overline{X} = \sum_{i=1}^{n} X_i$.] (b) Show that $E[X_i^2] = \mu^2 + \sigma^2$ and $E[\overline{X}^2] = \mu^2 + \sigma^2/n$. [Hint: By definition we have
- $E[X_i] = \mu$ and $\operatorname{Var}(X_i) = \sigma^2$, which implies that $E[\overline{X}] = \mu$ and $\operatorname{Var}(\overline{X}) = \sigma^2/n$.
- (c) Combine (a) and (b) to show that $E[S^2] = \sigma^2$. This is why the definition of S^2 has n-1 in the denominator instead of n.

6. A Small Sample. The label weight of a Cadbury Creme Egg is 1.2oz. In order to test this you weighed 10 eggs and obtained the following values (in ounces):

Let X represent the underlying distribution with unknown mean $\mu = E[X]$. For simplicity we assume that X is normal.

- (a) Compute the sample mean X̄ and the sample variance S².
 (b) Look up the *t*-tail probabilities t_{5%}(9) and t_{2.5%}(9).
 (c) Test the hypothesis H₀ = "μ = 1.2" against the one-sided alternative H₁ = "μ < 1.2" at the 5% level of significance.
- (d) Compute a two-sided symmetric 95% confidence interval for the unknown μ .