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1 Introduction to Probability

1.1 Motivation: Coin Flipping

The art of statistics is based on the experimental science of probability. Probability, in turn,
is expressed in the language of mathematical physics. Indeed, the first historical application
of statistics was to problems of astronomy. The fundamental analogy of the subject is that

probability ~ mass.

Prior to 1650, probability was not regarded as a quantitative subject. The idea that one
could do numerical computations to predict events in the future was not widely accepted.
The modern subject was launched when a French nobleman known as the Chevalier de Mérd]
enlisted the help of prominent French mathematicians to solve some problems related to
gambling and games of chance. Here is one of the problems that the Chevalier proposed.

Chevalier de Méré’s Problem

Consider the following two events:

)

(1) Getting at least one “six” in 4 rolls of a fair six-sided die.

(2) Getting at least one “double six” in 24 rolls of a pair of fair six-sided dice.

From his gambling experience the Chevalier observed that the chance of (1) was slightly
more then 50% and the chance of (2) was slightly less than 50%, but he couldn’t find a
satisfying mathematical explanation.

\. Y,

The mathematician Blaise Pascal (1623-1662) found a solution to this and other similar prob-
lems, and through his correspondence with Pierre de Fermat (1607-1665) the two mathemati-
cians developed the first mathematical framework for the rigorous study of probability. To
understand the Chevalier’s problem we will first consider a more general that was also solved
by Pascal. At the end of the section I’ll explain what coin flipping has to do with dice rolling.

(Pascal’s Problem ]

A two-sided coin (we call the sides “heads” and “tails”) is flipped n times. What is the
probability that “heads” shows up exactly k& times?

'His real name was Antoine Gombaud (1607-1687). As well as being a nobleman, he was also a writer and
intellectual on the Salon circuit. In his written dialogues he adopted the title of Chevalier (Knight) for the
character that expressed his own views, and his friends later called him by that name.



C J

For example, let n = 4 and k¥ = 2. Let X denote the number of heads that occur in a given
run of the experiment (this X is an example of a random variable). Now we are looking for
the probability of the event “X = 2.” In other words, we wan to find a number that in some
sense measures how likely this event is to occur:

Since the outcome of the experiment is unknown to us (indeed, it is random), the only thing
we can reasonably do is to enumerate all of the possible outcomes. If we denote “heads” by
H and “tails” by T then we can list the possible outcomes as in the following table:

X=0 TTTT

X =1 HTTT,THTT,TTHT,TTTH

X =2 | HHTT,HTHT, HTTH, THHT, THTH, TTHH

X =3 THHH,HTHH,HHTH, HHHT

X =1 HHHH

We observe that there are 16 possible outcomes, which is not a surprise because 16 = 2%.
Indeed, since each coin flip has two possible outcomes we can simply multiply the possibilities:

(total # outcomes) = (# flip 1 outcomes) x --- x (# flip 4 outcomes)
=2x2x2x2
— 94
= 16.

If the coin is “fair” we will assume that each of these 16 outcomes is equally likely to occur. In
such a situation, Fermat and Pascal decided that the correct way to measure the probability of
an event F is to count the number of ways that E can happen. That is, for a given experiment
with equally likely outcomes we will define the probability of E as

P(E)

_ # ways that F can happen

"~ total # of possible outcomes’

In more modern terms, we let S denote the set of all possible outcomes (called the sample
space of the experiment). Then an event is any subset F < S, which is just the subcollection
of the outcomes that we care about. Then we can express the Fermat-Pascal definition of
probabiliy as follows.



First Definition of Probability

Let S be a finite sample space. If each of the possible outcomes is equally likely then
we define the probability of an event £ < S as the ratio

#F
P(E)=-——
(B -5
where #FE and #S denote the number of elements in the sets F and S, respectively.
\ J

In our example we can express the sample space as

S = {TTTT,HTTT,THTT,TTHT,TTTH, HHTT, HTHT, HTTH,
THHT,THTH,TTHH,THHH, HTHH, HHTH, HHHT, HHH H}

and the event ¥ = “X = 2”7 corresponds to the subset
E={HHTT,HTHT,HTTH,THHT,THTH,TTHH },
so that #S = 16 and #F = 6. Thus the probability of E is

P(“2 heads in 4 coin flips”) = P(X = 2)
= P(E)
#E
T #S
# ways to get 2 heads

total # ways to flip 4 coins

6

16

We have now assigned the number 6/16, or 3/8, to the event of getting exactly 2 heads in 4
flips of a fair coin. Following Fermat and Pascal, we interpret this number as follows:

By saying that P(“2 heads in 4 flips”) = 3/8 we mean that we expect on average to get the
event “2 heads” in 3 out of every 8 runs of the experiment “flip a fair coin 4 times.”

I want to emphasize that this is not a purely mathematical theorem but instead it is a theo-
retical prediction about real coins in the real world. As with mathematical physics, the theory
is only good if it makes accurate predictions. I encourage you to perform this experiment with
your friends to test whether the prediction of 3/8 is accurate. If it is, then it must be that the
assumptions of the theory are reasonable.



More generally, for each possible value of k we will define the event
B = “X =k” = “we get exactly k heads in 4 flips of a fair coin.”
From the table above we see that
#Ey=1, #E, =4, #FEy=6, #F3=4, #E;=1.

Then from the formula P(Ey) = #E)/#S we obtain the following table of probabilities:

ool 1]2]s]a
P(X =) |15 | 15 | 16 | 76 | 16

Now let us consider the event that we obtain “at least 2 heads in 4 flips of a fair coin,” which
we can write as “X > 2.” According to Fermat and Pascal, we should define

_ # ways for X > 2 to happen

P(X >2) =

Note that we don’t have to compute this from scratch because the event “X > 2” can be
decomposed into smaller events that we already understand. In logical terms we express this
by using the word “or”:

“X=>222=“X=20RX=30R X =4
In set-theoretic notation this becomes a union of sets:
“X 22" = Eyu E3 U Ey.

We say that these events are mutually exclusive because they cannot happen at the same time.
For example, it is not possible to have X = 2 AND X = 3 at the same time. Set-theoretically
we write Ey N E3 = (J to mean that the intersection of the events is empty. In this case we
can just add up the elements:

# outcomes corresponding to “X > 27 = #FEy + #FE3 + #FE,
=6+4+1
=11.

We conclude that the probability of getting at least two heads in 4 flips of a fair coin is
P(X > 2) = 11/16. However, note that we could have obtained the same result by just
adding the corresponding probabilities:

_ # ways to get > 2 heads
= Y
_ #B + #Es + #E,

#S

P(X >2)

5



4B, #B;  #E,
TS #s s

= P(E3) + P(E3) + P(Ey)

=P(X =2)+ P(X =3)+ P(X =4)

It is worth remarking that we can use the same method to compute the probability of the
event “X = something,” or “something happens.” Since this event is composed of the smaller
and mutually exclusive events “X = k” for all values of k, we find that

P(X = something) = P(X =0)+ P(X =1)+ P(X =2)+ P(X =3)+ P(X =4)
1, 4,6 4
1616 16 16 16
1+4+6+4+1

16

In other words, we say that the probability of getting some number of heads is 1, or that
we expect to get some number of heads in 1 out of every 1 runs of the experiment. That’s
reassuring.

We can also divide up the event “X = something” in coarser ways. For example, we have
“X = something” = “X <2 OR X > 2.7

Since the events “X < 2” and “X > 2” are mutually exclusive, we can add the probabilities
to obtain

1 = P(X = something) = P(X < 2) + P(X > 2).

This might not seem interesting, but note that it allows us to compute the probability of
getting “less than 2 heads” without doing any further work:
1 16 11 5

P(X<2)=1-PX>2)=1-— =" — =2
16 16 16 16

Here is the general idea.

Complementary Events

Given an event ¥ € S we define the complementary event E/ < S which consists of all
of the outcomes that are not in E. Because the events E and E’ are mutually exclusive
(En E' = ¢J) and exhaust all of the possible outcomes (F U E' = S) we can count all of
the possible outcomes by adding up the outcomes from E and E’:

#S = #E + #E.



If S consists of finitely many equally likely outcomes then we obtain

_#E #E’_#E—k#E’_ﬂ_l

COH#S  #S #5S O#S

This is very useful when E’ is less complicated than E because it allows us to compute
P(FE) via the formula P(E) =1 — P(E').

. J

+

P(E) + P(E")

The simple counting formula P(E) = #E/#S gives correct predictions when the experiment
has finitely many equally likely outcomes. However, it can fail in two ways:

e [t fails when the outcomes are not equally likely.
e It fails when there are infinitely many possible oucomes.
Right now we will only look at the first case and leave the second case for later.

As an example of an experiment with outcomes that are not equally likely we will consider the
case of a “strange coin” with the property that P(“heads”) = p and P(“tails”) = ¢ for some
arbitrary numbers p and q. Now suppose that we flip the coin exactly once; the sample space
of this experiment is S = {H,T}. The events “heads”= {H} and “tails”= {T'} are mutually
exclusive and exhaust all the possibilities (we assume that the coin never lands on its side).
Even though the outcomes of this experiment are not equally likely we will assumeE] that the
probabilities can still be added:

1 = P(“something happens”) = P(“heads”) + P(“tails”) = p + q.

We will also assume that probabilities are non-negative, so that 1 — p = ¢ > 0 and hence
0 < p < 1. So our strange coin is described by some arbitrary number p between 0 and 1.
Now since 1 = p + ¢ we can observe the following algebraic formulas:
I=p+gq
1=12=(p+¢?=p"+2p0+ ¢
1=1°=(p+9q)°® =p* +3p°q+3pg® + ¢
1=1"=(p+q)* = p* + 4p’q + 6p°¢* + 4pg® + ¢*.

The binomial theoremf| tells us that the coefficients in these expansions can be read off from
a table called “Pascal’s Triangle,” in which each entry is the sum of the two entries above:

2 Again, this assumption will be justified if it leads to accurate predictions.
3We’ll have more to say about this later.



You may notice that the numbers 1,4,6,4,1 in the fourth row are the same numbers we saw
when counting sequences of 4 coin flips by the number of “heads” that they contain. In general
the number in the k-th entry of the n-th row of Pascal’s triangle is called (Z), which we read
as “n choose k.” It counts (among other things) the number of sequences of n coin flilps which
contain exactly k “heads.” If we assume that the coin flips are independent (i.e., the coin has
no memory) then we can obtain the probability of such a sequence by simply multiplying the
probabilities from each flip. For example, the probability of getting the sequence HT HT is

P(HTHT) = P(H)P(T)P(H)P(T) = papq = p*q”.

As before, we let X denote the number of heads in 4 flips of a coin, but this time our strange
coin satisfies P(H) = p and P(T) = q. To compute the probability of getting “exactly two
heads” we just add up the probabilities from the corresponding outcomes:
P(X =2)=P(HHTT)+ P(HTHT)+ P(HTTH)+ P(THHT)+ P(THTH) + P(TTHH)
= ppqq + pgpq + pqqp + qppq + qpgp + qqpp
=’ +°¢ + p°¢ + P + P
= 6p°q°.

At this point you should be willing to believe the following statement.

4 )
Binomial Probability

Consider a strange coin with P(H) = p and P(T) = ¢ where p+¢=1and 0 < p < 1.
We flip the coin n times and let X denote the number of heads that we get. Assuming
that the outcomes of the coin flips are independent, the probability that we get exactly
k heads is

P(X =k) = (Z)pkq”’“,

where (Z) is the k-th entry in the n-th row of Pascal’s triangle[] We say that this random

variable X has a binomaial distribution.
. )

For example, the following table shows the probability distribution for the random variable
X = “number of heads in 4 flips of a coin” where p = P(“heads”) satisfies 0 < p < 1. The
binomial theorem guarantees that the probabilities add to 1, as expected:

Eolol i ] 2 | s |4

q4

P(X = k) | p* | 4p°q | 6p%¢* | 4pg?

“Later we will see that these “binomial coefficients” have a nice formula: (}) = n!/(k!(n — k)!).



I want to note that this table includes the table for a fair coin as a special case. Indeed, if we
assume that P(H) = P(T) then we must have p = ¢ = 1/2 and the probability of getting 2
heads becomes

s o () (1) o) (o) - -

just as before. To summarize, here is a table of the binomial distribution for n = 4 and
various values of p. (P.S. There is a link on the course webpage to a “dynamic histogram” of
the binomial distribution where you can move sliders to see how the distribution changes.)

p p! 4p’q 6p*q° 4pg® q*
12| 1/16 4/16 6/16 4/16 1/16
0 1 0 0 0 0
1 0 0 0 0 1

1/6 || 625/1296 | 500/1296 | 150/1296 | 20/1296 1/1296

For example, if P(“heads”) = 1/6 then we expects to get “exactly 2 heads” in 150 out of every
1296 runs of the experiment. You can test this prediction as follows: Obtain a fair six-sided
die. Paint one side “blue” and the other five sides “red.” Now roll the die four times and count
the number of times you get “blue.” If you run the whole experiment 1296 times I predict
that the event “exactly two blue” will happen approximately 150 times. Try it!

We now have all the tools we need to analyze the Chevalier de Méré’s problem. The key
to the first experiment is to view one roll of a fair six-sided die as some kind of fancy coin
flip where “heads” means “we get a six” and “tails” means “we don’t get a six,” so that
P(“heads”) = 1/6. The key to the second experiment is to view a roll of two fair six-sided
dice as an even fancier kind of coin flip where “heads” means “we get a double six” and “tails”
means “we don’t get a double six.” What is P(“heads”) in this case?

You will finish the analysis of the Chevalier’s problem on the first exercise set.

1.2 The Definition of Probability

Consider an experiment and let S denote the set of all possible outcomes. For example,
suppose there are three balls in an urn and that the balls are colored red, green and blue. If
we reach in and grab one ball then the set of all possible outcomes is

S = {red, green, blue}.



We call this set the sample space of the experiment. We will refer to any subset of possible
outcomes F € S as an event. Here are the possible events for our experiment:

{red, green, blue}

{red, green} {red, blue} {green, blue}
{red} {green} {blue}

{}

We think of an event as a “kind of outcome that we care about.” For example, the event
E = {red, blue} means that we reach into the urn and we pull out either the red ball or the
blue ball. The event E = {green} means that we reach into the urn and pull out the green
ball.

If we assume that each of the three possible outcomes is equally likely (maybe the three
balls have the same size and feel identical to the touch) then Pascal and Fermat tell us that

the probability of an event F is

E E
P(E):Ziszﬁ.

For example, in this case we will have

2 1

P({red, blue}) = 3 and P({green}) = 3

But what if the outcomes are not equally likely? (Maybe one of the balls is bigger, or maybe

there are two red balls in the urn.) In that case the Fermat-Pascal definition will make false
predictions.

Another situation in which the Fermat-Pascal definition breaks down is when our experiment
has infinitely many possible outcomes. For example, suppose that we continue to flip a coin
until we see our first “heads,” then we stop. We can denote the sample space as

S ={H,TH,TTH,TTTH,TTTTH,TTTTTH,...}.

In this case it makes no sense to “divide by #S” because #S = oo. Intuitively, we also
see that the outcome H is much more likely than the outcome TTTT H. We can modify this
experiment so that the outcomes become equally likely, at the cost of making it more abstract:
Suppose we flip a coin infinitely many times and let X = the first time we saw heads. The
sample space S consists of all infinite sequences of H’s and T’s. If the coin is fair then in
principle all of these infinite sequences are equally likely. Let Fr = “X = k” be the subset
of sequences in which the first H appears in the k-th position. For example,

Ey = {THX : where X is any infinite sequence of H’s and T"s }.

In this case the Fermat-Pascal definition says

p(x—g) -2 _ =

#S o

10



which still doesn’t make any sense. Our intuition says that the numerator is a slightly smaller
infinity than the infinity in the denominator. But how much smaller?

Throughout the 1700s and 1800s these issues were dealt with on an ad hoc basis. In the
year 1900, one of the leading mathematicians in the world (Davd Hilbert) proposed a list of
outstanding problems that he would like to see solved in the twentieth century. One of his
problems was about probability.

4 )
Hilbert’s 6th Problem

To treat in the same manner, by means of axioms, those physical sciences in which already
today mathematics plays an important part; in the first rank are the theory of probabilities

and mechanics.
\_ J

In other words, Hilbert was asking for a set of mathematical rules (axioms) that would turn
mechanics/physics and probability into fully rigorous subjects. It seems that Hilbert was way
too optimistic about mechanics, but a satisfying set of rules for probability was given in 1933
by a Russian mathematician named Andrey Kolmogorovﬁ His rules became standard and we
still use them today. Let us now discuss

Kolmogorov’s three rules for probability.

Kolmogorov described probability in terms of “measure theory,” which itself is based on George
Boole’s “algebra of sets.”ﬁ Recall that a set S is any collection of things. An element of a set
is any thing in the set. To denote the fact that “x is a thing in the set S” we will write

reSsS.
We also say that z is an element of the set S. For finite sets we use a notation like this:
S ={1,2,4,apple}.

For infinite sets we can’t list all of the elements but we can sometimes give a rule to describe
the elements. For example, if we let Z denote the set of whole numbers (called “integers”)
then we can define the set of positive even numbers as follows:

{neZ:n>0and n is a multiple of 2}.

®Andrey Kolmogorov (1933), Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer, Berlin. English
Translation: Foundations of the Theory of Probability.
5George Boole (1854), An Investigation of the Laws of Thought, Macmillan and Co., Cambridge.

11



We read this as “the set of integers n such that n > 0 and n is a multiple of 2.” We could also

express this set as
{2,4,6,8,10,12,...}

if the pattern is clear.

If F1 and E5 are sets we will use the notation “E; € E5” to indicate that Eq is a subset of Es.
This means that every element of E; is also an element of E5. In the theory of probability
we assume that all sets under discussion are subsets of a given “universal set” S, which is
the sample space. In this context we will also refer to sets as events. There are three basic
“algebraic operations” on sets, which we can visualize using “Venn diagrams.”

We represent an event F# € S as a blob inside a rectangle, which represents the sample space:

-

More specifically, we think of the points inside the blob as the elements of £. The points
outside the blob are the elements of the complementary set E' < S:

If we have two sets F1, Fo © S whose relationship is not known then we will represent them
as two overlapping blobs:

12



We can think of the elements of F;7 and E5 as the points inside each blob, which we emphasize
by shading each region:

=l (=

Ee

S

We define the union E1 U Ey and intersection E1 n Es as the sets of points inside the following
shaded regions:

Y ] §
| |1.— ——— '——‘

B ()

|

E\VE, E.NEL

George Boole interpreted the three basic set-theoretic operations ( ', U , M) in terms of the

“logical connectives” (NOT, OR, AND). We can express this using set-builder notation:

E'={reS: NOT x € E},
E1UE2={£L'€SZ.CI}€E10RZL‘€E2},
ElﬁEQZ{l‘GSZ{IJEElAND:L'EEQ}.

13



If S represents the sample space of possible outcomes of a certain experiment, then the goal
of probability theory is to assign to each event £ € S a real number P(FE), which measures
how likely this event is to occur.

Kolmogorov decided that the numbers P(E) must satisfy three rules. Any function P satis-
fying the three rules is called a probability measure.

(e )
)

LFor all E < S we have P(E) > 0. In words: The probability of any event is non-negative.

4 )
Rule 2

For all El,Eg c S with El N E2 = @ we have P(El ) Eg) = P(El) + P(EQ)

In words: We say that two events Fp, s are mutually exclusive if their intersection is
the empty set 7, i.e., if they don’t share any elements in common. In this case, the
probability that “F; or Ey happens” is the sum of the probabilities of F; and Fs.

\. Y,

By using inductionﬂ we can extend Rule 2 to any sequence of mutually exclusive events.

4 R
Rule 2’

Consider a sequence of events Eq, Fa, ..., E, < S such that F; n E; = & for all i # j.
Then we have

P(Ey UEy U -+ U Ey) = P(Ey) + P(Ey) + -+ P(Ey)

P<RE>=iPwﬂ
i=1 i=1

Any function satisfying Rules 1 and 2 is called a measure. It is not yet a probability measure,
but it already has some interesting properties.

Properties of Measures. Let P satisfy Rules 1 and 2. Then we have the following facts.

"Never mind the details.

14



o If F; € F5 then P(El) < P(EQ)

Proof: If E is contained inside E» then we can decompose E5 as a disjoint union of two
sets as in the following picture:

£, £,0NE/

Since the events F1 and Fy n E} are mutually exclusive (i.e., the corresponding shaded
regions don’t overlap), Rule 2 says that

P(Es) = P(E1) + P(Ey N EY)
P(E;) — P(E1) = P(Ez n EY).

But then Rule 1 says that P(Ey n E}) = 0 and we conclude that

P(EsnE)) =0
P(E;) — P(Ey) =20
P(E3) = P(Ey),
as desired. O

e For any events Eq, E; € S (not necessarily mutually exclusive) we have

P(El U Eg) = P(El) + P(EQ) — P(El N EQ).

Proof: Define the sets A = Ey n E}, B = E; n Ey and C = E| n Ey. Then we can
decompose the union Fj U Fs into three disjoint pieces as in the following diagram:

LQ@\ fa= ]

E,-BuC EUE, = AUBUC

15



Since the sets A, B, C' are disjoint, Rule 2 tells us that
P(E,) = P(A) + P(B)
P(E3) = P(B) + P(C)
P(E1 UE2> IP(A)+P(B) +P(C)
Then by adding the first two equations we obtain
P(Ey) + P(E2) = [P(A) + P(B)] + [P(B) + P(C)]
=[P(A)+ P(B) + P(C)] + P(B)
= P(El U EQ) + P(B)
= P(El U EQ) + P(El N Ez).

Subtracting P(E; n E3) from both sides gives the desired formula. O
e The empty set has “measure zero”: P(Jf) = 0.

Proof: Let E be any set whatsoever and observe that the following silly formulas are
true: Fu @ =F and En & = . Therefore, Rule 2 tells us that

P(E) = P(E) + P(J)
and subtracting the number P(E) from both sides gives
0= P(2).

Example: Counting Measure

If the set S is finite then for any subset E € S we let #F denote the number of elements
in the set E. Observe that this counting function satisfies the two properties of a measure:

e For all E € S we have #F > 0.
e For all £y, Ey € S with By n Ey = J we have #(E1 U E) = #E1 + #Es.

We call this the counting measure on the set S. It follows from the previous arguments
that the following three properties also hold:

o If F1 € FE5 then #F1 < #E5.
e For all By, Fy € S we have #(E1 U Ey) = #E1 + #FEy — #(F1 n E).

e The empty set has no elements: #¢§ = 0. (Well, we knew that already.)
L J

3

However, the counting measure on a finite set is not a “probability measure” because it does

not satisfy Kolmogorov’s third and final rule.

16



( Rule 3

LWe have P(S) = 1. In words: The probability that “something happens” is 1.

—

And by combining Rules 1 and 3 we obtain one final important fact:
e For all events E € S we have P(E’') =1 — P(E).

Proof: By definition of the complement we have S = F U E' and E n E' = . Then by
Rule 2 we have P(S) = P(E U E') = P(E) + P(E') and by Rule 3 we have 1 = P(S) =
P(E) + P(E') as desired. O

Any function satisfying Rules 1, 2 and 3 is called a probability measure.

Example: Relative Counting Measure

Let S be a finite set. We saw above that the counting measure #FE satisfies Rules 1 and
2. However, it probably does not satisfy Rule 3. (The counting measure satisfies Rule
3 only if our experiment has a single possible outcome, in which case our experiment is
very boring.)

We can fix the situation by defining the relative counting measure:

_#E
#S°
Note that this function still satisfies Rules 1 and 2 because
e For all E € S we have #F > 0 and #S > 1, hence P(E) = #E/#S > 0.
e For all By, Fy < S with By n Ey # (& we have #(Fy U E2) = #F1 + #FE5 and hence

#(ELVEy)  #E +#E, _ #E N #E;

P(E)

P(E{ U Ey) = = = P(E P(E>).
(B v Ep) 75 75 25 Zs (E1) + P(E?)
But now it also satisfies Rule 3 because
#S
P =— =1.
(5) = 22
. )

Thus we have verified that the Fermat-Pascal definition of probability is a specific example of
a “probability measure.”[ﬂ That’s reassuring.

8Later we will call it the uniform probability measure on the set S.
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1.3 The Basics of Probability

In this section I'll give you some tools to help with the first exercise set. First I'll give the
official definition of “independence.”

4 )
Independent Events

Let P be a probability measure on a sample S and consider any two events Fq, Fo < S.
We say that these events are independent if the probability of the intersection is the
product of the probabilities:

P(El M EQ) = P(El)P(EQ)

Not all events are independent. Here’s a non-example: If we flip a fair coin once then the sam-
ple space is S = {H,T}. Consider the event F = {we get heads} = {H} and its complement
E’ = {we don’t get heads} = {T'}. The intersection of these events is empty, so that

P(we get heads and tails) = P(E n E') = P(J) = 0.

On the other hand, since the coin is fair we know that P(E) = P(E’) = 1/2 and hence
P(E)P(E’) = 1/4. Since

1/4=P(E)P(E"Y)# P(EnE')=0
we conclude that the events E and E’ are not independent. In words:
If the coin turns up “heads,” then the probability of “tails” changes from 1/2 to 0.
Here’s an actual example: If we flip a fair coin twice then the sample space is
S={HH,HT,TH,TT}.
Consider the events

H, = {we get heads on the first flip} = {HH, HT},
Hjy = {we get heads on the second flip} = {HH,TH}.

Since all outcomes are equally likely (the coin is fair) we have P(Hy) = #H/#S = 2/4 = 1/2
and P(Hz) = #H2/#S = 2/4 = 1/2, and hence P(H;)P(H2) = 1/4. On the other hand, since
Hy n Hy = {HH} we have

P(we get heads on the first flip and on the second flip)
— P(H; ~ H»)
= #(H1 n Hy)/#S =1/4.
Since P(H; n Hy) = P(Hy)P(H2) we conclude that these events are independent. In words:
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If the coin turns up “heads” on the first flip, then the probability of getting “heads”
on the second flip stays the same.

We’ll talk more about this later when we discuss “conditional probability.”

Next, here’s a useful general rule.

Law of Total Probability

Let P be a probability measure on a sample space S. Then for any events A, B € S we
have

P(A)=P(AnB)+P(AnB).
\ J

Proof: The idea is that we can use the event B to cut the event A into two pieces, as in the
following diagram:

@® |v

1
| l
o —— R

A ADR

2
N

Since the events A n B and A n B’ are mutually exclusive (they have no overlap) we can use
Rule 2 to conclude that

A=(AnB)u(An B
P(A)=P(AnB)+ P(AnB).

Example. Let (P,S) be a probability spaa—ﬂ and let A, B € S be any events satisfying
P(A) =04, P(B)=05 and P(AuB)=0.6.

Use this information to compute P(A n B’).

9That is, a probability measure P on a sample space S.
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Solution: I want to use the formula P(A) = P(A n B) + P(A n B’) but first I need to know
P(A n B). To do this I will use the generalization of Rule 2 for events that are not mutually
exclusive:

P(AUB) = P(A) + P(B) — P(An B)
0.6 =0.4+0.5— P(An B)
P(AnB)=04+05—-0.6=0.3.

Then we have
P(A)=P(AnB)+P(AnB')

04=03+P(AnB)
0.1=P(AnB).

’

Next I'll present a couple rules of “Boolean algebra,” i.e., rules that describe the relationships
between the “Boolean operations” of complement (’) , union (U) and intersection (n). These
don’t necessarily have anything to do with probability but we will apply them to probability.

The first rule describes how unions and intersections interact.

Distributive Laws b
For any three sets A, B, C' we have
An(BuC)=(AnB)u(AnC),
Au(BnC)=(AuB)n(AuC).
In words, we say that each of the operations n, U “distributes” over the other.
\. Y,

The easy way to remember these rules is to remember how multiplication of numbers dis-
tributes over addition of numbers:

ax(b+c)=axb+axec.

However, we shouldn’t take this analogy too seriously because we all know that addition of
numbers does not distribute over multiplication of numbers:

a+ (bxc)# (a+b)x(a+c).

Thus, there is a symmetry between the set operations U, n that is not present between
the number operations +, x. Here is a verification of the first distributive law using Venn
diagrams. You should verify the other one for yourself.
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Anc

Of course, the union here is not disjoint (another word for “mutually exclusive”). Thus
to compute the probability of A n (B u C) we will need to subtract the probability of the
intersection of A n B an A n C, which is

(AnB)n(BnC)=AnBnC.
Then we have

P(An(Bu())

P([(AnB) U (AnC))
P(AnB)+P(AnC)—P((AnB)n(AnC))
P(AnB)+P(AnC)—P(AnBnC(C).

The next rulﬂ tells how complementation interacts with union and intersection.

N
De Morgan’s Laws
Let S be a set. Then for any two subsets A, B € S we have
(AuB) =A nDB,
(AnB)Y =A"uUDB.
In words: The operator (/) converts U into N, and vice versa.
\. Y,

Here’s a proof of the first law using Venn diagrams:

10 Ayugustus de Morgan (1806—1871) was a British mathematician and a contemporary of George Boole.
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You will give a similar proof for the second law on HW1. However, it’s not really necessary
because the second law follows logically from the first. That is, for any two subets A, B € S
we can apply the first de Morgan law to the sets A’ and B’ to obtain

(A'uB) =AY n(BY.
Since the complement of a complement is just the original set, this simplifies to
(A'uB)Y =AnB.
Finally, we take the complement of both sides to obtain

(AuBY))Y=(AnB)
A'UB =(AnB),

which is the second de Morgan law. O
Here’s a more challenging example illustrating these ideas.

Example. Let (P, S) be a probability space and let A, B < S be any events satisfying
P(AUuB)=0.76 and P(Au B')=0.8T.

Use this information to compute P(A).

First Solution: If you draw the Venn diagrams for AU B and A u B’, you might notice that
(AuUB)uU(AuB)=S and (AuB)n(AuB')=A,

which implies that

P(S) = P(AuB) + P(Au B') — P(A)
P(A)=P(AUB)+P(AuUB') — P(S)
P(A) = 0.76 + 0.87 — 1 = 0.63.
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Second Solution: If you don’t notice this trick, you will need to apply a more brute-force
technique. First we can apply de Morgan’s law to obtain

P((AuB))=1-P(AuB)
P(A'A B =1-0.76 = 0.24

and

P(AUuBY)=1-P(Au B
P(A' ~B) =1-0.87 =0.13.

Then we can apply the law of total probability to obtain

P(A"Y=PA nB)+ P(A'n B
=0.13+0.24 = 0.37,

and hence P(A) =1— P(A’) =1 —0.37 = 0.63. There are many ways to do this problem.

The last tool for today allows us to compute the probability of a union when we only know
that probabilities of the intersections.

( )

Principle of Inclusion-Exclusion

Let (P, S) be a probability space and consider any events A, B < S. We know that
P(AuB)=P(A)+ P(B)— P(An B).
More generally, for any three events A, B,C < S we have

P(AuBuC(C)= P(A)+P(B)+ P(C)
—P(AnB)—PANnC)—P(BnC(C)
+P(AnBnC).

And in the most general case we have

P(union of n events) = Z P(events)

— Z P(double intersections)

+ Z P(triple intersections)
(

— Z P(quadruple intersections)

+ P(intersection of all n events).
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In words: To compute the probability of a union we first add the probabilities of the
individual events, then we subtract the probabilities of the double intersections, then
add back in the probabilities of the triple intersections, etc.

Let’s prove the case of three events A, B,C < S. If the events are mutually exclusive (that is,
if AnB=AnC=BnC =) then Rule 2 tells that

P(AuBuC(C)=P(A)+ P(B)+ P(C).

However, if the events are not mutually exclusive then we know that we have to subtract
something, but what? That is:

P(AuBuC(C)=P(A)+P(B)+ P(C)-7

A Venn diagram can help us understand this:

The numbers indicate how many times each region has been counted in the sum P(A) +
P(B) + P(C). Note that the double overlaps were counted twice and the triple overlap was
counted three times. To fix this we will first subtract the double overlaps to obtain

P(A) + P(B) + P(C) — P(An B) — P(A~ C) — P(B ~ C)

as in the following diagram:
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But this still isn’t right because we have now counted the triple overlap zero times. We
obtain the correct formula by adding back one copy of A n B n C to get

P(AuBuC(C)=P(A)+P(B)+ P(C)
—P(AnB)—PAnC)—P(BnC(C)
+P(AnBnC),

as desired. O
Here’s an example.

Example. Roll a fair six-sided die three times and consider the following events:

A = {we get 1 or 2 on the first roll},
B = {we get 2 or 3 on the second roll},
C = {we get 3 or 4 on the third roll.

Compute the probability of the union P(Au B u C).
First Solution. Since the die is fair we have P(A) = P(B) = P(C) = 2/6 = 1/3. Further-

more, since the die has “no memory” these three events must be independent, which implies
that

P(An B) = P(A)P(B) = 1/9,

P(AnC) = P(A)P(C) = 1)9,

P(B~ C) = P(B)P(C) = 1)9,
P(An B~ C) = P(A)P(B)P(C) = 1/27

Finally, using the principle of inclusion-exclusion gives

P(AuBuC(C)=P(A)+P(B)+ P(C)
—P(AnB)—PAnC)—P(BnC(C)
+P(AnBn(O),

1 1 27-9+1 19

1
=Syt gty T T Toar

Second Solution. We can view the six-sided die as a “strange coin” where the definition of
“heads” changes from flip to flip. On the first flip “heads” means “1 or 2,” on the second flip
it means “2 or 3” and on the third flip it means “3 or 4.” It doesn’t really matter because the
flips are independent and the probability of “heads” is always 1/3. Suppose we flip the “coin”
three times and let X be the number of heads we get. Then we have

P(we get heads on the first flip or the second flip or the third flip)
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In probability there are often many ways to solve a problem. Sometimes there is a trick that
allows us to solve the problem quickly, as in the second solution above. However, tricks are
hard to come by, so we often have to fall back on a slow and steady solution, such as the first
solution above.

Exercises 1

1.1. Suppose that a fair coin is flipped 6 times in sequence and let X be the number of
“heads” that show up. Draw Pascal’s triangle down to the sixth row (recall that the zeroth
row consists of a single 1) and use your table to compute the probabilities P(X = k) for
k=0,1,2,3,4,5,6.

1.2. Suppose that a fair coin is flipped 4 times in sequence.
(a) List all 16 outcomes in the sample space S.
(b) List the outcomes in each of the following events:
A = {at least 3 heads},
B = {at most 2 heads},
C = {heads on the 2nd flip},
D = {exactly 2 tails}.

(c) Assuming that all outcomes are equally likely, use the formula P(E) = #E/#S to
compute the following probabilities:

P(AUB), P(AnB), P(C), P(D), P(CnD).

1.3. Draw Venn diagrams to verify de Morgan’s laws: For all events E, F' < S we have
(a) (FEUF) =EnF,
(b) (EnF) =F uUF'.
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1.4. Suppose that a fair coin is flipped until heads appears. The sample space is
={H,TH,TTH,TTTH,TTTTH,...}.

However these outcomes are not equally likely.

(a) Let Ej be the event {first H occurs on the kth flip}. Explain why P(E;) = 1/2%. [Hint:
The outcomes of the coin flips are independent.]

(b) Use the “geometric series” to verify that all of the probabilities sum to 1:

o8]
2 (Ep) = 1.

k=1

1.5. Suppose that P(A) = 0.5, P(B) = 0.6 and P(A n B) = 0.3. Use this information to
compute the following probabilities. A Venn diagram may be helpful.

(a) P(Av B),
(b) P(An B,
(c) P(AuB).

1.6. Let X be a real number that is “selected randomly” from [0, 1], i.e., the closed interval
from zero to one. Use your intuition to assign values to the following probabilities:

(a) P(X =1/2),

(b) P(0 < X <1/2),
(c) PO<X <1/2),
(d) P(1/3 < X <3/4),
(e) P(—1 < X < 3/4).

1.7. Consider a strange coin with P(H) = p and P(T) = ¢ = 1 — p. Suppose that you flip
the coin n times and let X be the number of heads that you get. Find a formula for the
probability P(X > 1). [Hint: Observe that P(X > 1) + P(X = 0) = 1. Maybe it’s easier to
find a formula for P(X = 0).]

1.8. Suppose that you roll a pair of fair six-sided dice.

(a) Write down all elements of the sample space S. What is #S57 Are the outcomes equally
likely? [Hopefully, yes.]

(b) Compute the probability of getting a “double six.” [Hint: Let £ < S be the subset of
outcomes that correspond to getting a “double six.” Assuming that the outcomes of your
sample space are equally likely, you can use the formula P(E) = #E/#S.]
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1.9. Analyze the Chevalier de Méré’s two experiments:

(a) Roll a fair six-sided die 4 times and let X be the number of “sixes” that you get. Compute
P(X > 1). [Hint: You can think of a die roll as a “strange coin flip,” where H =“six”
and T' =*“not six.” Use Problem 7.]

(b) Roll a pair of fair six-sided dice 24 times and let Y be the number of “double sixes” that
you get. Compute P(Y > 1). [Hint: You can think of rolling two dice as a “very strange
coin flip,” where H =“double six” and T =“not double six.” Use Problems 7 and 8.]

1.10. Roll a fair six-sided die three times in sequence, and consider the events

E; = {you get 1 or 2 or 3 on the first roll},
E5 = {you get 1 or 3 or 5 on the second roll},
E5 = {you get 2 or 4 or 6 on the third roll}.

You can assume that P(E;) = P(E2) = P(E3) = 1/2.

(a) Explain why P(E1nEy) = P(E1nE3) = P(EanE3) =1/4and P(E1nEyn Es) = 1/8.
(b) Use this information to compute P(E;, u Es U Ej).

1.4 Binomial Probability

At the beginning of the course I sketched the solution to Pascal’s Problem on coin flipping.
Now we have developed enough technology to fill in the details. Let us consider a coin with

0<PH)=p<l and O0<P(T)=qg=1-p<l1

and suppose that we flip the coin n times in sequence. If X is the number of heads we want
to compute the probability P(X = k) for each value of k € {0,1,2,...,n}.

This is closely related to the problem of expanding the binomial (p + ¢)™ for various values of
n. For example, recall that for small values of n we have

3 =p? + 3p%q + 3pg® + ¢,

(p+q)

(p+4q)
1=1%=(p+q)* =p* +2pq + ¢*,

(p+4q)

(p+q)* =p* +4p°q + 6p°¢° + 4pg® + ¢*.

In order to interpret the coefficients in these expansions it is convenient to temporarily pretend
that pg # gp. Then instead of (p + )% = p? + 2pq + ¢* we will write

p+a)?=@+a)(p+aq)
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=pp+q) +qlp+q)
=pp+pq+qp+qq
= (pp) + (pq + qp) + (qq)

and instead of (p + q) = p® + 3p?q + 3pg?® + ¢* we will write

p+a)?=m@+a)(p+aq)?
= (p+q)(pp +pg + qp + qq)
= p(pp +pq + qp + qq) + q(pp + pq + qp + qq)
= (ppp + ppq + pap + pqq) + (gpp + qpq + qqp + qqq)
= (ppp) + (ppg + pap + qpp) + (pqq + gpq + qqp) + (499)-

We make the following observation.

( )
Binomial Probability I

Consider any real numbers such that p+¢ = 1 and let W, . be the set of words that can
be made from k copies of the symbol p and n — k copies of the symbol ¢. For example:

Wa2 = {ppqq, papq, paqap, appq, 4pap, 4qpp}-

Then by expanding the binomial 1 = 1" = (p + ¢)"™ we obtain

n
L=(p+q)" =) # Wi ¢ "
k=0

Since the terms of this sum add to 1 it is reasonable to interpret them as probabilities. In fact
I claim that the kth term #W,, - p¥¢"~* is the probability P(X = k) that we are looking for.
For example, suppose that n = 4 and k£ = 2. Then applying Kolmogorov’s Rule 2 gives

P(X = 2) = P(we get 2 heads in 4 flips of a strange coin)
PUHHTT,HTHT, HTTH, THHT, THTH, TTHH})

— P(HHTT) + P(HTHT) + P(HTTH) + P(THHT) + P(THTH) + P(TTHH).

And since the coin flips are independent we can expand this further to obtain

P(X =2)=P(HHTT)+ P(HTHT)+ P(HITH) + P(THHT)+ P(THTH) + P(TTHH)
= P(H)P(H)P(T)P(T)+ P(H)P(T)P(H)P(T)+---+ P(TI")P(TP(H)P(H)
= ppqq + pgpq + pqqp + qppq + qpgp + qqpp
— 2P+ P2 + 2P + P2+ PP + 2P
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= 6p°¢>.

Observe that this 6 is just number of words in the set Wy 2 = {ppqq, papq, pqap, qpra, qpap, qaprp},
i.e., the number of words made from two p’s and two ¢’s. In general we have the following.

~
Binomial Probability IT

Consider a coin with P(H) = p and P(T') = q. If we flip the coin n times and let X be
the number of heads we get, then we have

P(X = k) = P(k heads and n — k tails)
— #(words made from k p’s and n — k ¢’s) - pF¢"*
= #Wor -0 " "

The previous result guarantees that these probabilities add to 1.
. J

In order to work with binomial probability we must find a way to count the words in the set
Wy k. One way to do this is via Pascal’s Triangle. Here’s the official definition.

4 )
Definition of Pascal’s Triangle

Let (Z) denote the entry in the nth row and the kth diagonal of Pascal’s Triangle:

To be precise, these numbers are defined by the boundary conditions

(Z)zl when k=0or k=n

and the recurrence relations

n n—1 n—1
<k>:<k1>+< i > when 0 < k < n.
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I claim that the entry (Z) of Pascal’s Triangle is equal to the number of words made from k
p’s and n — k ¢’s. That is, I claim that

(Z) = #ka

In order to prove this it is enough to show that the numbers #W,, ;. satisfy the same boundary
conditions and recurrence relations as the numbers (Z) To verify the boundary conditions we
note that

#Wn,O = #Wn,n =1

because each of the sets Wy, 0 = {qqq--- ¢} and W,,, = {ppp---p} consists of a single word.
Then to verify the recurrence relations we must show that

#HWok = F#FWhn_1 k-1 +#Wp_1p foral 0 <k <n.

To prove this we have a clever trick. We will divide up the words W, ; into two groups,
depending on whether their first letter is p or ¢. If the first letter is p then the
remaining n — 1 letters can be filled in with a word from the set W, _q ,—1 (i.e., with k — 1
p’s and n — k ¢’s), whereas if the first letter is ¢ then the remaining n — 1 letters can be filled
with with a word from the set W,_;  (i.e., with k p’s and n — k — 1 ¢’s). For example, when
n =4 and k = 2 we have

{ppraq, papq, pagp, apra, apap, gapp} = {Praq, papq, paapr} © {appq, apap, aqpp}
#{ppaq, papq, paap, aprq, qpap, qapp} = #Ppaq, papq, peap} + #{dpraq, dpap, dqrp}
#{ppaq, papq, pqap, appq, apap, 4qppr} = #{raq, apq, aap} + #{pre, Pep, app}

#Wyo = #Ws1 +#Wso
6=3+3.

And here’s a diagram describing the general situation:

l \yl/f—\/y/.{«'“%/
R _ n-
— ) ) )& (,’( i ﬁ”\fdm—’\,k
\\_/ﬁw”""‘""\/ e \/\——VL" 1 btl)\g -
n L - 7
\/’A“\///\MM
Y'\.r

Since the numbers (2) and #W, ;. are equal we conclude the following.

31



Binomial Probability ITI

Consider a coin with P(H) = p and P(T') = ¢. If we flip the coin n times and let X be
the number of heads we get, then

P(X = k) = P(k heads and n — k tails) = <Z>pkqn_k,

where (Z) is the entry in the nth row and kth diagonal of Pascal’s Triangle.

\.

This rule allows us to compute binomial probabilities for small values of n. (See the first
exercise set.) However, when n is large this rule is not very practical. For example, suppose
we flip a coin 100 times. Then the probability of getting exactly 12 heads is

100
) p12g%8.

P(12 heads in 100 coin flips) = < 19

where (11020) is the entry in the 100th row and 12th diagonal of Pascal’s Triangle. But who

wants to draw 100 rows of Pascal’s Triangle? Actually it is enough just to compute the entries

in the rectangle above (11020), but this still involves over 1000 computations!
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Luckily there is a formula that we can use the get the answer directly. Here it is:

100\ 100 99 98 97 96 95 94 93 92 91 90 89
Sttt | 421.051. 1 .
(12) 211009 8 7 6 5 4 3 2 71 b00042L051106,700

That’s still pretty nasty but at least we got there in less than 1000 computations. Based on
this example you can probably guess the following general theorem.

( )
Binomial Probability IV

For 0 < k < n, the entry in the nth row and kth diagonal of Pascal’s triangle satisfies

(n)zn‘(n—l) mn—2) (m—k+3) (n—k+2) (n—k—l—l).
k

(k—1) (k—2) 3 2 1

In order to prove this formula we will first rewrite it in terms of the factorial notation. For all
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integers n = 0 let us define

| 1 when n = 0,
n! =
nn—1)(n—-2)---3-2-1 whenn > 1.

The definition 0! = 1 might seem silly to you, but read on. Observe that the numerator of the
previous formula can be written in terms of factorials:
nn—1)--(n—k+1)(n—k)n—k—-1)---3-2-1 n!

nn—1)--(n—k+1)= mn—k)n—k—1)---3-2-1 :(n—k)!

Thus the whole formula can be rewritten as

<n> -1 (n—k+1) _al/n-k! _ nl

k k! B k! ~ Kl(n— k)

Conveniently, this formula now gives the correct answer (Z) = 1 when £k = 0 and k = n.
That’s the only reason that we define 0! = 1 (i.e., convenience). Finally, since we already
know that #W,, ;. = (Z) we can rewrite the statement.

Binomial Probability V

For any 0 < k < n, let W,, . be the set of words that can be made from k copies of the
symbol p and n — k copies of the symbol q. Then we have

n!

# Wk = Kl(n — k)l

And this is the form that we will prove. Remark: I realize that this lecture has been a
challenge. Even though I've taught this material many times, the students still frown when
I get to this part of the course. (It’s not just you.) If you pay attention just a bit longer I
promise that the next lecture will be easier. Two steps forward; one step back.

So, our goal is to count the words made from k p’s and n — k ¢’s. In order to introduce the
ideas I will start with an example where we already know the answer:

#Wy2 = 6.
The way we computed this was to explicitly write out all of the elements:

Wa2 = {ppqq, papq, paap, appq, 4pap, 4qpp}-

But what if we’re too lazy to do that? How can we get to the number 6 without having to
write down all six of the words? The idea is to begin with an easier version of the problem.
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Problem. How many words can be made from the distinguishable symbols p1, p2, q1, 27

The answer to this problem is 4! =4-3-2-1 = 24. In fact, there are 24 ways to put any four
distinguishable symbols in order. To see this observe that there are 4 ways to choose the 1st
(say, leftmost) symbol. Then since one symbol has been used there are 3 remaining symbols
that we can put in the 2nd position. Next there are 2 remaining choices for the 3rd position
and only 1 possible choice for the 4th position, giving us a total of

4 X 3 X 2 X 1 =4l =24  choices.
1st symbol  2nd symbol  3rd symbol 4th symbol

In general if will define the set of labeled words
LW, 1, = {words made from the letters pi,p2, ..., Dk, 1,92, .- Gn—k},

then we observe that #LW,, = n!. (The value of k doesn’t even matter because these could
really be any n distinguishable symbols.) Our goal is to relate the labeled words LW, ;, back
to the unlabeled words W, .

Answer. We have #LW,o/#W,2 = 4 because there are 4 ways to put labels on a given
unlabeled word.

For example, the unlabeled word pggp can be labeled in 4 ways:

P19 P2
praxlt fr
P2 P P
P2

PLLE T

Lak els

Why 47 Because there are 2 ways to label the p’s and 2 ways to label the ¢’s, for a total of
2 x 2 = 4 choices. It follows from this that we have

HLWyo/#Wyo =4
Wi = #LWyo/4 = 24/4 = 6.
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The great thing about this method is that it allows us to count the words in the set Wj 2
without having to write them all down.

In general if we are given an unlabeled word in W), ; made from k p’s and n — k ¢’s then
there will be k! ways to add labels to the p’s and (n — k)! ways to add labels to the q’sm We
conclude that

#(labeled words) = #(unlabeled words) x #(ways to add labels)
#Lka = #ka X k'(n — k)'
n! = #Wy 1, x kl(n — k)!

and hence
n!

Wk = F =i

Here is a summary of what we did.

~\
Binomial Probability: Final Statement

Consider a coin with P(H) = p and P(T') = ¢. If we flip the coin n times and let X be
the number of heads we get, then

n! _
' pk:qn k:'

PX =k) = Kl(n — k)

The so-called Binomial Theorem guarantees that these probabilities add to 1:

PX=k) =Y ——pig"F = S )
Z ( ) ;;ok!(”_k)!pq (p+4q)

1.5 Multinomial Probability

While we’re here, I should mention that the results of the previous section can be generalized
from coin flipping to dice rolling without much extra work. Let me state the result right up
front.

(Multinomial Probability 1

HExplanation: Adding the labels 1,2,. ..,k to a sequence of p’s is really just the same as putting the labels
1,2,...,k in order and we know that there are k! ways to do this.
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Consider an s-sided die where P(side i) = p; = 0. In particular, we must have
pr+p2t--+ps=1

Now suppose you roll the die n times and let X; be the number of times that side i shows
up. Then the probability that side 1 shows up k; times and side 2 shows up ko times
and --- and side s shows up k; times is
_ _ _ _ n! k1 ko ko
P(Xl —kl,Xg = kz,...,XS = k)s) = mpl p2 ~~-p5 .
. J

To check that this makes sense let’s examine the case of an s = 2 sided die (i.e., a coin). Let’s
say that “heads”="‘“side 1”7 and “tails”=*“side 2,” so that P(H) = p; and P(T') = p2. Roll the
die n times and let

X1 = #times side 1 (heads) shows up,

X9 = #times side 2 (tails) shows up.

If X1 = k1 and X5 = ks then of course we must have ki + ko = n. The formula for multinomial
probability tells us that the probability of getting k1 heads and ko tails is

n' TL‘ k1 n—ko

k1 k
P(X1 =k, Xo =ky) = mpllpf = mlﬁ Dy 7,

which agrees with our previous formula for binomial probability. So we see that the formula
is true, at least when s = 2.

Basic Example. Here is an example with s = 3. Suppose that we roll a “fair 3-sided die,”
whose sides are labeled A, B, C. If we roll the die 5 times, what is the probability of getting
A twice, B twice and C once?

Solution. Define P(A) = p1, P(B) = p2 and P(C) = p3. Since the die is fair we must have
1

p1=p2=p3=§-

Now define the random variables

X1 = F#times A shows up,
X9 = #times B shows up,
X3 = #times C' shows up.

We are looking for the probability that X; = 2, X9 = 2 and X3 = 1, and according to the
multinomial probability formula this is

5!
P(X1=2,Xy=2X3=1) = mlﬁpgpé
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Harder Example. Consider a fair six-sided die with sides labeled A, A, A, B, B, C. If we roll
the die 5 times, what is the probability of getting A twice, B twice and C once?

Solution. What makes this example harder? Instead of treating this as a normal 6-sided die
we will treat it as a “strange 3-sided die”m with the probabilities

p1 = P(A) = 3/6 = 1/2
p2=P(B)=2/6=1/3
p3 = P(C) = 1/6.

The rest of the example proceeds as before. That is, we define the random variables

X1 = #times A shows up,
X9 = F#times B shows up,
X3 = #times C shows up.

and then we compute the probability:

P(X1 = 2. X5 = 2, X5 = 1) = =2 p2p2p1
( 1 — 4yA2 — 4,A3 — )_2|2'1'p1p2p3

C5-4-3.2.1 (1\? /(1\? /1]
S 2:1-2-1-1\2 3 6

1

What is the purpose of the number 30 = 5!/(2!2!1!) in these calculations? I claim that this is
the number of words that can be formed from the letters A, A, B, B, C. That is, I claim that

30 = #{AABBC, AABCB, AACBB, .. .).

Instead of writing down all of the words, we can count them with the same trick we used
before. First we note that there are 5! = 120 words that can be made from the labeled
symbols Aj, As, Bi, Bo,C1. On the other hand, if we are given an unlabeled word such as
AABCB, then there are 2!12!1! = 4 ways to add labels:

12We are familiar with this trick from our experience with “strange coins.”
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a NABGE,
Lebels !;\2 AW E1 c, GZ

AABECR YT AA, 8GR,
Az ’;'\W E’L C"\ 81

Then we conclude that

#(labeled words) = #(unlabeled words) x #(ways to add labels)
5! = #(unlabeled words) x 2!2!1!
5!

# (unlabeled words) = o1 — 30,

as desired. Here’s the general story.

\
Counting Words with Repeated Letters

The number of words that can be made from kq copies of the letter pi, ko copies of the
letter po, ... and k, copies of the letter py is

(k1+k2+k‘3+"'+/€s)!
kkolka! - kgl

Example. How many words can be formed using all of the letters

m’Z’S?S’/I’7S?S7Z7p7p7l ?

Solution. We have k; = 1 copies of m, ko = 4 copies of 7, ks = 4 copies of ky = 2 copies of
p. So the number of words is

(1+4+4+2) 11!

11414121 = T~ oh 050

Another way to phrase this example is by treating the symbols m, i, s, p as variables and then
raising the expression m + ¢ + s + p to the power of 1111—_3] We observe that the expression

13Much like Nigel Tufnel’s amplifier.
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mississippi is just one of the terms in the expansion:

(m+i+s+p)tt =+ mississippi + - - - .

However since these variables represent numbers it is more common to write mississippi =
mitstp?. After grouping all of the terms with the same number of each factor we obtain

m o,

: 11 _ 44,2
(m+i+s+p) +1!4!4!2!mzsp+
Here is the general sitaution.
L )
The Multinomial Theorem
Let p1,p2,...,ps be any s numbers. Then for any integer n > 0 we have
ks
(p1+p2+ -+ )" Zkl,kz k,p1p2 P
where we sum over all integers k1, ko, ..., ks = 0 such that ky + ko + -+ - ks = n. We will

use the special notation

" __n
ki,ko,... ks N kilko! - k!

for the coefficients, and we will call them multinomial coefficients. You should check that
this notation relates to our previous notation for binomial coefficients as follows:

@ B <k,nn— k) B <nﬁk)

The multinomial theorem explains why the multinomial probabilies add to 1. Indeed, suppose
that we roll an s-sided die n times, with P(side i) = p;. In particular this implies that

prtpet--+ps=1
If X; is the number of times that side i shows up then the total probability of all outcomes is

D IP(X1 = k1, Xo = ka, ..., Xo = ki)

= n kl kg_.. ks
Z(kl,k%...,k)pl P

=(P1tp2+-+ps)”
=1"
=1,

as desired.
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1.6 Principles of Counting

We already used some counting principles in our discussion of binomial and multinomial
probability. In this section we’ll be a bit more systematic. Here is the principle on which
everything else is based.

(The Multiplication Principle ]

LWhen a sequence of choices is made, the number of possibilities multiplies. J

For example, suppose we want to put the three symbols a,b,c in order. We can use the
following process:

e First choose the leftmost symbol in 3 ways.
e Now there are 2 remaining choices for the middle symbol.
e Finally, there is 1 remaining choice for the rightmost symbol.

The multiplication principle tells us that there are

3 X 2 X 1 = 3! = 6 choices in total.
~—— ~—— S~——

1st choice  2nd choice  3rd choice

We can also express this process visually as a branching diagram (or a “tree”):
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ab abc

ca cab

/
a
\
b
ac acb
I\
ba € bac
/
b
%] b
\
be a bea
<]
/
X

cb cba

The process of putting distinct symbols in a line is called permutation.

r
Permutations (i.e., Putting Things in Order)

Consider a set of n distinct symbols and let ,, Py be the number of ways to choose k of
them and put them in a line. Using the multiplication principle gives

nPr=_mn x n—1 x---xn—(k—1)=nn—-1)---(n—k+1).
Ist choice  2nd choice kth choice

Observe that we have ,P, = n!, ,FPy = 1 and ,P. = 0 for k¥ > n, which makes sense.
(There is no way choose more than n symbols.) When 0 < k < n it is convenient to
simplify this formula by using the factorial notation:

nPr=nn—1)---(n—k+1)
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n!
(n— k)"

Sometimes we want to allow the repetition of our symbols. For example, suppose that we
want to form all “words” of length k from the “alphabet” of symbols {a,b}. We can view this
as a branching process:

According to the multiplication principle, the number of possibilities doubles at each step. If
we stop after k steps then the total number of words is

2 x 2 X oo X 2 =2k,
— — —
1st letter  2nd letter kth letter

In general we have the following.

Words (i.e., Permutations With Repeated Symbols)

Suppose we have an “alphabet” with n possible letters. Then the number of “words” of
length k is given by

n X n X - X n = nk.
—— —— ——
1st letter  2nd letter kth letter
\_ J

Example. A certain state uses license plates with a sequence of letters followed by a sequence
of digits. The symbols on a license plate are necessarily ordered.
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(a) How many license plates are possible if 2 letters are followed by 4 digits?
(b) How many license plates are possible if 3 letters are followed by 3 digits?
ssume that the alphabet has etters.

A hat the alphabet has 26 1

Solution. (a) The problem doesn’t say whether symbols can be repeated (i.e., whether we
are dealing with words or permutations) so let’s solve both cases. If symbols can be repeated
then we have

#(plates) = 26 x 26 x 10 x 10 x 10 x 10 = 6,760,000.
—— — —— —— —— ——
1st letter  2nd letter  1st digit 2nd digit 3rd digit 4th digit

If symbols cannot be repeated then we have

#(plates) = 26 x 25 x 10 x 9 x_ 8 x 7 =3,276,000.
— — — — —— ——
1st letter  2nd letter  1st digit 2nd digit 3rd digit 4th digit

(b) If symbols can be repeated then we have
#(plates) = 26 x 26 x 26 x 10 x 10 x 10 = 17,576,000.
—— —— —— ~— — ——
1st letter  2nd letter  3rd letter  1st digit 2nd digit 3rd digit
If symbols cannot be repeated then we have

#(plates) = 26 x 25 x 24 x 10 x 9 x 8 =11,232,000.
— — — — — ——
1st letter  2nd letter  3rd letter  1st digit 2nd digit 3rd digit

Problems involving words and permutations are relatively straightforward. It is more difficult
to count unordered collections of objects (often called combinations).

Problem. Suppose that there are n objects in a bag. We reach in and grab a collection of k
unordered objects at random. Find a formula for the number ,,C}, of possible choices.

In order to count these combinations we will use a clever trick{l¥] Recall that the number of
ways to choose k& ordered objects is

n!
(n— k)"

On the other hand, we can choose such an ordered collection by first choosing an unordered
collection in ,,C) ways, and then putting the k objects in order in k! ways. We conclude that

nPk::

#(ordered collections) = #(unordered collections) x #(orderings)

nPk:anXk!
o = nPr  nl/(n—Fk)! n!
ETTR T T R T K=k

14 . . . . . . .
You may remember this trick from our discussion of binomial coefficients.
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( )

Combinations (i.e., Unordered Permutations)

Suppose there are n distinct objects in a bag. You reach in and grab an unordered
collection of k objects at random. The number of ways to do this is

Yes, indeed, these are just the binomial coefficients again. We have now seen four different
interpretations of these numbers:

e The entry in the the nth row and kth diagonal of Pascal’s Triangle.

e The coefficient of p*¢™~* in the expansion of (p + ¢)*.

e The number of words that can be made with k copies of p and n — k copies of q.
e The number of ways to choose k unordered objects from a collection of n.

Each of these interpretations is equally valid. In mathematics we usually emphasize the second
interpretation by calling these numbers the binomial coefficients and we emphasize the fourth
interpretation when we read the notation out loud:

n n! 43 ”
<k) = m = “n choose k.

Principles of counting can get much fancier than this, but I'll stop here because these are all
the ideas that we will need in our applications to probability and statistics. For example, here
is an application to so-called urn problemsfr_sl

Example. Suppose that an urn contains 2 red balls and 4 green balls. Suppose you reach in
and grab 3 balls at random. If X is the number of red balls you get, compute the probability
that X = 1. That is,

P(X =1) = P(you get 1 red and 2 green balls) =7

I will present two solutions.

First Solution. Let’s say that our collection of 3 balls is unordered. The sample space is

S = {unordered selections of 3 balls from an urn containing 6 balls}

151n probability an “urn” just refers to any kind of container. The use of the word “urn” is traditional in
this subject and goes back to George Pdlya.
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and we conclude that

6\ 6
= = = — = 2
#5 = 6Cs (3) 331~ 20

Let us assume that each of these 20 outcomes is equally likely. Now consider the event

E: “X — 177

= {collections consisting of 1 red and 2 green balls}.

In order to count these we must choose 1 ball from the 2 red balls in the urn and we must
choose 2 unordered balls from the 4 green balls in the urn. The order of these two choices
doesn’t matter; in either case we find that

#E = #(ways to choose the 1 red ball) x #(ways to choose the 2 green balls)
2 4
= X
1 2
=2x6=12.

We conclude that

Second Solution. On the other hand, let’s assume that our selection of 3 balls is ordered.
Then we have

S = {ordered selections of 3 balls from an urn containing 6 balls}

and hence 6l
#S=6P3=3—;=6-5~4=120.

But now the event
E = “X = 1" = {ordered selections containing 1 red and 2 green balls}

is a bit harder to count. There are many ways to do it, each of them more or less likely to
confuse you. Here’s one way. Suppose the six balls in the urn are labeled as r1, 72, g1, 92, 93, g4-
To choose an ordered collection of 3 let us first choose the pattern of colors:

99,979, 94gT"

There are 3 = (:1)’) ways to do this Now let us add labels. There are P, = 2 ways to place
a label on the red ball and there are 4P, = 4 - 3 = 12 ways to place labels on the green balls,
for a grand total of

3
#E = <1> x 9P x 4Py = 3 x 2 x 12 = 72 choices.

16Choose one position for the red ball out of three possible positions.
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We conclude that (3)
X 91 X 4Py 72 3
P(X =1)=- =— =_-=060%.
( ) 6P 120 5 ’
The point I want to emphasize is that we get the same answer either way, so you are free to
use your favorite method. I think the first method (using unordered combinations) is easier.

Modified Example. In a classic urn problem such as the previous example, the balls are
selected from the urn without replacement. That is, we either

e select all of the balls in one chunk, or
e select the balls one at a time without putting them back in the urn.

Now let’s suppose that after each selection the ball is replaced in the urn. That is: We grab
a ball, record its color, then put the ball back and mix up the urn. This has the effect of
“erasing the memory” of our previous choices, and now we might as well think of each ball
selection as a “fancy coin flip,” where “heads”=“red” and “tails”=“green.”

Assuming that all six balls are equally likely, our fancy coin satisfies

2 1 4
P(heads) = P(red) = = = = and P(tails) = P(green) = 6=

2
6 3 3

If we select a ball 3 times (with replacement) and let Y be the number of “heads” (i.e., “reds”)
then the formula for binomial probability gives

P(Y =1) = P(we get 1 red and 2 green balls, in some order)
3
= <1)P(1red)1P(g1reen)2

3\ /1\'/2\* 12 4
:<1) <3> <3) =57 =5 =M%

Note that the probability changed because we changed how the experiment is performed.

To summarize, here is a complete table of probabilities for the random variables X and Y.
Recall that we have an urn containing 2 red and 4 green balls. We let X be the number of red
balls obtained when 3 balls are selected without replacement, and we let Y be the number
of red balls obtained when 3 balls are selected with replacementE]

k 0 1 2 3
roc-n| OW_ 4 B0 _ 1 60 _ 4 6
P =0 |G G =210 B =20 G =210®"3) =4

'"The formula (i) = f‘m, makes no sense because (—1)! is not defined. However, we might as well say that

@) = 0 because is it impossible to choose 3 things from a set of 2.
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A random variable of type X above has the intimidating name of hypergeometric distribution,
which I think is ridiculous. Here is the general situation.

( )
Hypergeometric Probability (i.e., Urn Problems)

Suppose that an urn contains r red balls and g green balls. Suppose you reach in and
grab n balls without replacement (either ordered or unordered) and let X be the number
of red balls you get. Then we have

() (220)
(r-‘rg) :
n
We say that the random variable X has a hypergeometric distribution. If instead we
replace the ball after each selection then X has the familiar binomial distribution:

rocen- () () ()

P(X =k) =

Since the binomial distribution (coin flipping) can be generalized to the multinomial distri-
bution (dice rolling), you might wonder if there is also a “multihypergeometric” distribution.
There is, and the details are pretty much the same. Here is the statement.

4 )
Multihypergeometric Probability (Please Ignore the Stupid Name)

Suppose that an urn contains r; balls of color i for i = 1,2,...,s. Suppose that you reach
in and grab n balls without replacement and let X; be the number of balls you get with
color . Then the probability of getting ky balls of color 1, ko balls of color 2, ...and ks

balls of color s is
™ 79 Ts
k1) \ k2 ks
TN +ro+ -+ Ty )
n

P(X1=k,Xo=ky,...,Xs=ks) =

To end this section let me present a few more challenging examples.
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Poker Hands. In a standard deck of cards there are 4 possible “suits” (&, $, 0, &) and 13
possible “ranks” (2,3,4,...,9,10,J,Q, K, A). Each card has a suit and a rank, and all possible
combinations occur, so a standard deck contains

4 x 13 = 52 cards.
S~ Y~

# suits  # ranks

In the game of poker, a “hand” of 5 cards is dealt from the deck. If we regard the cards in a
hand as ordered then the number of possible hands is

52
50Ps = 52 x 51 x 50 x 49 x 48 = -— = 311,875,200.
1st card  2nd card  3rd card  4th card  5th card
However, it is more conventional to regard a hand of cards as unordered. Note that each
unordered hand can be ordered in 5! = 120 ways, thus to obtain the number of unordered

hands we should divide the number of ordered hands by 5! to obtain

5205 = = 2,598, 960.

soP5 521 520/470  /52\ 311,875,200
50 5l.470 51 \5) 120

In other words, there are approximately 2.6 million different poker hands.

Let S be the sample space of unordered poker hands, so that #S = (552) = 2,598,960. There
are certain kinds of events E < S that have different values in the game based on how rare
they are. For example, if our hand contains 3 cards of the same rank (regardless of suit) and
2 cards from two other ranks then say we have “3 of a kind.” Now consider the event

E = {we get 3 of a kind}.

If all poker hands are equally likely then the probability of getting “3 of a kind” is

_#E _ #E

P(E) = -
(B) #S ~ 2,598,960’

and it only remains to count the elements of E.

There are many ways to do this, each of them more or less likely to confuse you. Here’s one
method that I like. In order to create a hand in the set £ we make a sequence of choices:

e First choose one of the 13 ranks for our triple. There are (113) = 13 ways to do this.

From the 4 suits at this rank, choose 3 for the triple. There are (g) = 4 ways to do this.

Next, from the remaining 12 ranks we choose 2 ranks for the singles. There are (122) = 66
ways to do this.

For the first single we can choose the suit in (le) = 4 ways.

Finally, we can choose the rank of the second single in (‘11) = 4 ways.
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For example, suppose our first choice is the rank {J}. Then from the suits {&, {, 0, &} we
choose the triple {&, O, #}. Next we choose the ranks {5, A} from the remaining 12, and
finally we choose the suits {{>} and {&} for the singles. The resulting hand is

T, JO, Tk, 50, A,

In summary, the total number of ways to get “3 of a kind” is

#E:@x@x@x@XQ

choose rank  choose triple choose ranks choose single  choose single

for triple from rank for singles from rank from rank
=13 x4x66x4x4
= 954,912,

hence the probability of getting “3 of a kind” is

_#E 54,912
- #S 2,598,960

P(E) = 2.11%.

That problem was tricky, but once you see the pattern it’s not so bad. Here are two more
examples.

A poker hand consisting of 3 cards from one rank and 2 cards from a different rank is called
a “full house.” Consider the event

F = {we get a full house}.

Then using a similar counting procedure gives

13 4 12 4
#F = X X
1 3 1 2
~—— ~— ~—— ~——
choose rank  choose triple choose rank  choose double
for triple from rank or double from ran
=13x4x12x6
= 3,744,

and hence the probability of getting a “full house” is

_H#F 3,744

- - — 0.144%.
#S 2,598,960 %

P(F)

We conclude that a “full house” is approximately 7 times more valuable than “3 of a kind.”
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Finally, let us consider the event G = {we get 4 of a kind}, which consists of 4 cards from one
rank and 1 card from a different rank. Using the same counting method gives

choose rank choose quadruple  choose rank  choose single
for quadruple from rank for single from rank
=13x1x12x14
— 624,

and hence the probability of “4 of a kind” is

_#G 624

_ - = 0.024%.
#S 2,598,960 i’

P(G)

Note that “4 of a kind” is exactly 6 times more valuable than a “full house.”

For your convenience, here is a table of the standard poker hands, listed in order of probability.
Most of them can be solved with the same method we used above. The rest can be looked up

on Wikipedia.

Name of Hand | Frequency | Probability

Royal Flush 4 0.000154%

Straight Flush 36 0.00139%
Four of a Kind 624 0.024%
Full House 3,744 0.144%
Flush 5,108 0.197%
Straight 10,200 0.392%
Three of a Kind 54,912 2.11%
Two Pairs 123,552 4.75%
One Pair 1,098,240 42.3%
Nothing 1,302,540 50.1%

The event “nothing” is defined so that all of the probabilities add to 1. It is probably no
accident that the probability of getting “nothing” is slightly more than 50%. The inventors
of the game must have done this calculation.

1.7 Conditional Probability and Bayes’ Theorem

The following example will motivate the definition of conditional probability.
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Motivating Example for Conditional Probability. Suppose we select 2 balls from an
urn that contains 3 red and 4 green balls. Consider the following events:

= {the 1st ball is red},
B = {the 2nd balls is green}.

Our goal is to compute P(A n B). First note that we have

3 3 4 4

P =gz=7 =4 PB=37=7

If the balls are selected with replacement then these two events are independent and the
problem is easy to solve:
3 4 12

However, if the balls are selected without replacement then the events A and B will not be
independent. For example, if the first ball is red then this increases the chances that the
second ball will be green because the proportion of green balls in the urn goes up. There are
two ways to deal with the problem.

P(An B) = P(A)- P(B) =

First Solution (Count!). Two balls are taken in order and without replacement from an
urn containing 7 balls. The number of possible outcomes is

#S = 7, 0x 6 =T-6=42
— ——
ways to choose  ways to choose
1st ball 2nd ball

Now let £ = A n B be the event that “the 1st ball is red and the 2nd ball is green.” Since
there are 3 red balls and 4 green balls in the urn we have

#S = 3 X 4 =3 x4=12.
~—— S~——
ways to choose  ways to choose
1st ball 2nd ball

If the outcomes are equally likely then it follows that

#E 3x4 12
Lkl = = = 28.6%.
#S T Tx6 42 &

P(An B) = P(E) =

Second Solution (Look for a Shortcut). We saw above that

3 x4

7x6’

where the numerator and denominator are viewed as the answers to counting problems. But
it is tempting to group the factors vertically instead of horizontally, as follows:

P(AnB) = 3 x4 m 3113234
7Tx6 7><6 7 6 76

52

P(AnB) =




Since the probability of A is P(A) = 3/7 we observe that

P(An B)=P(A) x %

Unfortunately, 4/6 does not equal the probability of B. So what is it? Answer: This is the
probability that B happens, assuming that A already happened. Indeed, if the 1st ball is red
then the urn now contains 2 red balls and 4 green balls, so the new probability of getting
green is 4/(2 + 4) = 4/6. Let us define the notation

P(B|A) = the probability of “B given A”
= the probability that B happens, assuming that A already happened.

In our case we have

P(B|A) = P(2nd ball is green, assuming that the 1st ball was red)

#(remaining green balls)

#(all remaining balls)

Our solution satisfies the formula
P(An B)=P(A)P(B|A),
which is closely related to the “multiplication principle” for counting;:

#(ways A n B can happen) = #(ways A can happen)x
#(ways B can happen, assuming that A already happened).

In general we make the following definition.

é )
Conditional Probability

Let (P, S) be a probability space and consider two events A, B € S. We use the notation
P(B|A) to express the probability that “B happens, assuming that A happens.” Inspired
by the multiplication principle for counting, we define this probability as follows:

P(An B)=P(A)-P(B|A).
As long as P(A) # 0, we can also write

P(AnB) P(BnA)
POIA = =5t = Py
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C J

This definition gives us a new persective on independent events. Recall that we say A, B < S
are independent whenever we have

P(An B)=P(A)- P(B).
On the other hand, the following formula is always true:
P(An B)=P(A) n P(B|A).
By comparing these formulas we see that A and B are independent precisely when
P(B|A) = P(B).

In other words, the probability of B remains the same whether or not A happens. This
gets to the heart of what we mean by “independent.” The events from our example are not
independent because we found that
4 4
66.66% = 6= P(B|A) > P(B) = - = 57.1%.
In this case, since the occurrence of A increases the probability of B, we say that the events
A and B are positively correlated. More on this later.

Here are the basic properties of conditional probability.

4 )
Conditional Probability is a Probability Measure

Let P be a probability measure on a sample space S and consider any event A < S.
Then the conditional probability Po(B) = P(B|A) = P(AnB)/P(A) is a new probability
measure on the same sample space. In other words, Kolmogorov’s three rules hold:

1. For all events B < S we have P4(B) = 0.
2. For all events By, B, € S such that By n By = (J we have

PA(Bl v BQ) = PA(Bl) + PA(BQ).

3. We have P4(S) = 1.
\. J

Rules 1 and 3 are good exercises for you. Here’s my proof of Rule 2.
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Proof of Rule 2. For any events B, Bs < S, the distributive law tells us that
Aﬁ(BluBQ) :(AﬁBl)U(AﬁBQ).

If the events By, Bo satisfy By n By = ( then we must also have (A n By) n (A n Bg) = O,
hence it follows from the usual Rule 2 for P that

P(Aﬁ(BluBz)) =P(AﬁBl)+P(AﬁBQ).
Finally we divide both sides by P(A) to obtain

P(Aﬁ (Bl ) Bg)) _ P(Aﬁ Bl) n P(AOBQ)
P(A) P(4) P(A)
P(B1 v By|A) = P(Bi1|A) + P(Bz|A)

PA(Bl ] BQ) = PA(Bl) + PA(BQ),

as desired. O

A good way to remember the formula P(B|A) = P(An B)/P(A) is by using a Venn diagram.
At first, we can think of the probability of B as the “area of blob B as a proportion of the
sample space S.” If we assume that A happens then we are essentially shrinking the sample
space to coincide with A. Then the probability of B|A is the “area of blob A n B as a
proportion of the new sample space A.” Here is the picture:

“ ot a(: A/\@”

o dg‘ /‘\ !

The next example will motivate Bayes” Theorem.

Motivating Example for Bayes’ Theorem. Now let me describe the same experiment in
a different way. Behind a secret curtain there is an urn containing 3 red and 4 green balls.
Your friend goes behind the curtain, selects two balls without replacement and tells you that
their second ball was green. In that case, what is the probability that their first ball was red?
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Solution. Again we define the events

A = {the 1st ball is red},
B = {the 2nd ball is green}.

In the previous example we used the multiplication principle to justify the formula
P(An B)=P(A) - P(B|A),

where P(B|A) represents the probability that the 2nd ball is green, assuming that the 1st ball
was red. This was reasonable because the event A happens before the event B. But now we
are being asked to compute a backwards probability:

P(A|B) = the probability of “A given B”
= the probability that A happened first, assuming that B happened later.

In other words, we are trying to compute how the event B in the future influences the event A
in the past. On the one hand, we might worry about this because it goes beyond our original
intentions when we defined the notion of conditional probability. On the other hand, we can
just mindlessly apply the algebraic formulas and see what happens.

By reversing the roles of A and B we obtain two formulas:
P(An B)=P(A) - P(B|A)
P(Bn A) = P(B)- P(A|B).

The first formula is reasonable and the second formula might be nonsense, but let’s proceed
anyway. Since we always have P(A n B) = P(B n A) the two formulas tell us that

P(B)- P(A|B) = P(A) - P(B|A)

P(A) - P(B|A)
P(A|B) = —PB)
And since we already know that P(A) = 3/7, P(B) = 4/7 and P(B|A) = 4/6 we obtain
P(AIB) - P(A)P-(I;()B|A) _ (3/721)7(4/6) _ % o

In summary: Without knowing anything about the 2nd ball, we would assume that the 1st
ball is red with probability P(A) = 3/7 = 42.9%. However, after we are told that the 2nd
ball is green this increases our belief that the 1st ball is red to P(A|B) = 50%. Even though
the computation involved some dubious ideas, it turns out that this method makes correct
predictions about the real world.

One of the first people to take backwards probability seriously was the Reverend Thomas
Bayes (1701-1761) although he never published anything during his lifetime. His ideas on
the subject were published posthumously by Richard Price in 1763 under the title An Fssay
towards solving a Problem in the Doctrine of Chances. For this reason the general method
was named after him.
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Bayes’ Theorem (Basic Version)

Let (P, S) be a probability space and consider two events A, B € S. Let’s suppose that
A represents an event that happens before the event B. Then the forwards probability
P(B|A) and the backwards probability P(A|B) are related by the formula

P(A)- P(B|A) = P(B) - P(A|B).

Here is the classic application of Bayes’ Theorem.

Classic Application of Bayes’ Theorem. A random person is administered a diagnostic
test for a certain disease. Consider the events

T = {the test returns positive},
D = {the person has the disease}.

Suppose that this test has the following false positive and false negative rates:
P(T|D") = 2% and P(T'|D) = 1%.

So far this seems like an accurate test, but we should be careful. In order to evaluate the
test we should also compute the backwards probability P(D|T"). In other words: If the test
returns positive, what is the probability that the person actually has the disase?

First let us compute the other forwards probabilities P(T'|D) (true positive) and P(T'|D’)
(true negative). To do this we observe for any events A, B that

A=(AnB)u(An B
P(A)=P(AnB)+P(AnB')
P(A) P(AnB) P(AnB)
P(A) ~ P(A) P
1=P(B|A) + P(B’|A).

Now substituting A = D and B =T gives

P(T|D) + P(T'|D) = 1
P(T|D) = 1 — P(T'|D) = 99%

and substituting A = D’ and B = T gives
P(T\D") + P(T'|D") =1
P(T'|D")=1- P(T|D") = 98%.
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Now Bayes’ Theorem says that

P(D) - P(T|D)

P(DIT) = =25,

but we still don’t have enough information to compute this because we don’t know P (D) or
P(T). Let us assume that the disease occurs in 1 out of every 1000 people:

P(D)=0.001 and  P(D’) = 0.999.
Then we can compute P(T') from the Law of Total Probability:

P(T)=P(DAT)+PD AT)
— P(D)- P(T|D) + P(D') - P(T|D")
— (0.001) - (0.99) + (0.999) - (0.02) = 2.01%.

Finally, we obtain

P(D) - P(T|D)
P(T)

_ P(D)- P(T|D)
~ P(D)- P(T|D) + P(D') - P(T|D")
(0.001) - (0.99)

(0.001) - (0.99) + (0.999) - (0.02)

P(DIT)

=4.72%.

In other words: If a random persons test positive, there is a 4.72% chance that this person
actually has the disease. So I guess this is not a good test after all.

That was a lot of algebra, so here is a diagram of the situation:

0.7
P2
=

\N» -
p(T’/D TN‘L\ y=(0o (6.0%)
90,8 P(RPNT) = (2.001) (O

P(paT) = (0.001)(0.99)

‘

/b(’bv b’ 'y 2 a.02 P(O'NT) = (0.999)(0.02)
:‘G - ?C(\D -
,9};\‘ T
Prrs T/
(T%P(D'm') =(6.999)(6.9%)

We can view the experiment as a two step process. First, the person either has or does not have
the disease. Then, the test returns positive or negative. The diagram shows the four possible
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outcomes as branches of a tree. The branches are labeled with the forwards probabilities. To
obtain the probability of a leaf we multiply the corresponding branches. Then to obtain the
backwards probability

P(DnT) P(DnT)

P(DIT) = P(TY ~ PDAT)+P(DAT)

we divide the probability of the D n T leaf by the sum of the D n'T and D’ n T leaves.

And here is a more comprehensive example of Bayes’ Theorem.

Comprehensive Example of Bayes’ Theorem. There are three bowls on a table contain-
ing red and white chips, as follows:

2 d /l 'f‘&-"'\ 5 e\

k\ﬁwg /\ k‘)ub”"{ Z loawﬁ 3

The table is behind a secret curtain. Our friend goes behind the curtain and returns with a
red chip. Problem: Which bowl did the chip come from?

Solution. Of course, we could just ask our friend which bowl the chip came from, but in this
scenario they are not allowed to tell us. So let B; be the event that “the chip comes from
bowl ¢.” Before we know that the chip is red, it is reasonable to assume that the three bowls
are equally likely. This is our so-called prior distribution:

i ‘ 1 2 3
P(B)|1/3 1/3 1/3

After we learn that the chip is red, we should update our distribution to reflect the new
information. That is, we should replace our prior distribution

P(B1), P(B2), P(Bs)
with the posterior distribution
P(B1|R), P(B2|R), P(B3|R),
where R is the event that “the chip is red.” According to Bayes’ Theorem we have

P(B;) - P(R|B;)
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and according to the Law of Total Probability we have

P(R) = P(B1 nR)+ P(Ban R)+ P(Bsn R)
= P(B1) - P(R|B1) + P(B2) - P(R|B2) + P(B3) - P(R|B3)
Thus we obtain a formula expressing the posterior distribution (backwards probabilities)
P(B;|R) in terms of the prior distribution P(B;) and the forwards probabilities P(R|B;):
P(B;)P(R|B;)
P(B1)P(R|B;) + P(B2)P(R|B2) + P(B3)P(R|B3)
Since we know the distribution of chips in each bowl, we know the forwards probabilities:

2 1 1 1 5 5
P(R|By) = CECERY P(R|By) = 142 " 3 P(R|B3) = 5549
Finally, by plugging in these values we obtain the posterior distribution when the chip is red.
For fun, I also calculated the posterior distribution when the chip is white:

P(B;|R) =

i 1 2 3
PB;) | 1/3 1/3 1/3
P(Bi|R) |9/25 6/25 10/25
P(B;|W) | 9/29 12/29 8/29

Here’s a picture:

PoasTERIOTIR

30 F ) 3 % ; o
qulq ;'i““ﬁ Z; ) ) E;

We still don’t know which bowl the chip came from, but at least we can make an educated

guess. If the chip is red then it probably came from bowl 3. If the chip is white then it
probably came from bowl 2.

Here is the general situation.
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r
Bayes’ Theorem (Full Version)

Suppose that our sample space S is partitioned into m “bowls” as follows:
BiuByu---uB, =5 with B;nB; = foralli# j.

The events B; partition any other event A < S as in the following picture:

N4

Suppose we know the prior probabilities P(B;) and the forwards probabilities P(A|B;).
Then the Law of Total Probability says

P(A)=P(B1nA)+P(BynA)+---+P(BnnA)
= P(B1) - P(A[B1) + P(Bz) - P(A[Bz) + -+ + P(Bm) - P(A|Bm),

which can be shortened to

P(A) = Y P(B;)- P(A|B)).

i=1
Finally, we use Bayes’ Theorem to compute the kth posterior (backwards) probability:
P(Byn A) P(By) - P(A|By)

P(A) XL, P(Bi) - P(AB)

P(Bi|A) =

This is an important principle in statistics because it allows us to estimate properties of an
unknown distribution by using the partial information gained from an experiment. We will
return to this problem in the third section of the course.
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Exercises 2

2.1. Suppose that a fair s-sided die is rolled n times.

(a) If the i-th side is labeled a; then we can think of the sample space S as the set of all
words of length n from the alphabet {ai,...,as}. Find #5S.

(b) Let E be the event that “the 1st side shows up ky times, and .. .and the s-th side shows
up ks times. Find #E. [Hint: The elements of E are words of length n in which the
letter a; appears k; times.]

(c) Compute the probability P(E). [Hint: Since the die is fair you can assume that the
outcomes in S are equally likely.]

2.2. In a certain state lottery four numbers are drawn (one and at a time and with replace-
ment) from the set {1,2,3,4,5,6}. You win if any permutation of your selected numbers is
drawn. Rank the following selections in order of how likely each is to win.

(a) You select 1,2,3,4.
(b) You select 1,3,3,5.
(¢) You select 4,4,6,6.
(d) You select 3,5,5,5.
(e) You select 4,4,4,4.

(¢

2.3. A bridge hand consists of 13 (unordered) cards taken (at random and without replace-
ment) from a standard deck of 52. Recall that a standard deck contains 13 hearts and 13
diamonds (which are red cards), 13 clubs and 13 spades (which ard black cards). Find the
probabilities of the following hands.

(a) 4 hearts, 3 diamonds, 2 spades and 4 clubs.
(b) 4 hearts, 3 diamonds and 6 black cards.
(c) 7 red cards and 6 black cards.

2.4. Two cards are drawn (in order and without replacement) from a standard deck of 52.
Consider the events

A = {the first card is a heart}
B = {the second card is red}.

Compute the probabilities

P(A), P(B), P(B|A), P(AnB), P(A|B).
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2.5. An urn contains 2 red and 2 green balls. Your friend selects two balls (at random and
without replacement) and tells you that at least one of the balls is red. What is the probability
that the other ball is also red?

2.6. There are two bowls on a table. The first bowl contains 3 chips and 3 green chips. The
second bowl contains 2 red chips and 4 green chips. Your friend walks up to the table and
chooses one chip at random. Consider the events

B; = {the chip comes from the first bowl},
By = {the chip comes from the second bowl},
R = {the chip is red}.
(a) Compute the probabilities P(R|B;) and P(R|Bz2).

(b) Assuming that your friend is equally likely to choose either bowl (i.e., P(By) = P(Ba2) =
1/2), compute the probability P(R) that the chip is red.

(c) Compute P(Bp|R). That is, assuming that your friend chose a red chip, what is the
probability that they got it from the first bowl?

2.7. A diagnostic test is administered to a random person to determine if they have a certain
disease. Consider the events

T = {the test returns positive},
D = {the person has the disease}.

Suppose that the test has the following “false positive” and “false negative” rates:
P(T|D") =2% and P(T'|D) = 3%.
(a) For any events A, B recall that the Law of Total Probability says
P(A)=P(An B)+ P(An B').

Use this to prove that
1 = P(BJA) + P(B'|A).

(b) Use part (a) to compute the probability P(T|D) of a “true positive” and the probability
P(T'|D’) of a “true negative.”

(c) Assume that 10% of the population has the disease, so that P(D) = 10%. In this case
compute the probability P(7T) that a random person tests positive. [Hint: The Law of
Total Probability says P(T) = P(T n D)+ P(T n D’).]

(d) Suppose that a random person is tested and the test returns positive. Compute the
probability P(D|T') that this person actually has the disease. Is this a good test?
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2.8. Consider a classroom containing n students. We ask student for their birthday, which
we record as a number from the set {1,2,...,365} (i.e., we ignore leap years). Let S be the
sample space.

(a) Explain why #S = 365™.
(b) Let E be the event that {no two students have the same birthday}. Compute #FE.
(c) Assuming that all birthdays are equally likely, compute the probability of the event

E' = {at least two students have the same birthday}.

(d) Find the smallest value of n such that P(E’) > 50%.

2.9. It was not easy to find a formula for the entries of Pascal’s Triangle. However, once we’ve
found the formula it is not difficult to check that the formula is correct.

(a) Explain why n! =n x (n — 1)
(b) Use part (a) and the formula (}) = k,(%lk), to prove that

W-G)+()

Review of Key Topics

e Suppose an experiment has a finite set S of equally likely outcomes. Then the probability
of any event £ € S is
#E

= 75

e For example, if we flip a fair coin n times then the #5 = 2" outcomes are equally likely.
The number of sequences with k H’s and n — k T is (Z), thus we have

P(E)

#(ways to get k heads) @
#S Coon’

P(k heads) =

o If we flip a strange coin with P(H) = p and P(T") = ¢ then the #S = 2" outcomes are
not equally likey. In this case we have the more general formula

P(k heads) = (Z)P(H)kP(T)”_k - (Z) gk,

This agrees with the previous formula when p = ¢ = 1/2.

e These binomial probabilities add to 1 because of the binomial theorem:
2 (n
> < >p’“q”_k =(p+q"=1"=1
k=0 k
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e In general, a probability measure P on a sample space S must satisfy three rules:
1. For all £ < S we have P(E) > 0.
2. For all Ey, E» € S with F1 n Es = (J we have

P(El U EQ) = P(El) + P(EQ)

3. We have P(S) = 1.

Many other properties follow from these rules, such as the principle of inclusion-exclusion,
which says that for general events E7, Fs © .S we have

P(E1 v EQ) = P(El) + P(Eg) — P(El N Eg)

Also, if E' is the complement of an event F < S then we have P(E') =1 — P(E).

Venn diagrams are useful for verifying identities such as de Morgan’s laws:

(El M Ez)/ = Ei U Eé,
(El U EQ)/ = Ei M Eé

e Given events E1, Fy € S we define the conditional probability:

P(El M EQ)

P(Er|E) = P(Ey)

Bayes’ Theorem relates the conditional probabilites P(E;|Es) and P(Es|FE1):

P(Eq) - P(E2|E1) = P(Ez) - P(E1|Ey).

The events E1, Fo are called independent if any of the following formulas hold:
P(E1|E2) = P(El) or P(EQ‘El) = P(EQ) or P(El N EQ) = P(El) . P(EQ)

e Suppose our sample space is partitioned as S = Ey U Fo U --- U By, with E; 0 E; =

for all i # j. For any event F' < S the law of total probability says

P(F)=PE\nF)+P(EynF)+---+ P(E,|F)
P(F)= P(E,)- P(F|E1) + P(E2)- P(F|E3) +---+ P(Ep,) - P(F|En).

Then the general version of Bayes’ Theorem says that

P(ExnF)  P(E) - P(F|E)
PR = = 5(F) - = S, P(B) PFIE)
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The binomial coefficients have four different interpretations:
(Z) = entry in the nth row and kth diagonal of Pascal’s Triangle,

= coefficient of zFy"*

in the expansion of (z + y)",
= #(words made from k copies of one letter and n — k copies of another letter),

= #(ways to choose k unordered things without replacement from n things).

And they have a nice formula:

(n) nl nx(n=1)x-x(m—k+1)

k :k!x(n—k)!: Ex(k—1)x---x1
Ordered things are easier. Consider words of length k from an alphabet of size n:

#(words) =n xn x --- x n=nk,

n!

#(words without repeated letters) =n x (n—1) x --- x (n—k+1) = I

More generally, the number of words containing k1 copies of the letter “a;,” ko copies of
the letter “as,” ...and ks copies of the letter “as” is

k14 ko + -+ ks _ (k1 + ka4 -+ k)!
k17k27"'7ks

k! X kol x e X k!

These numbers are called multinomial coefficients because of the multinomial theorem:

n ki, k s
(p1 +pz+-~-+ps)"=2<kl oy k>p11p22~-p’§7
b ) *t S

where the sum is over all possible choices of k1, ko, ..., ks such that k1 + ks +-- -+ ks = n.
Suppose that we have an s-sided die and p; is the probability that side ¢ shows up. If
the die is rolled n times then the probability that side ¢ shows up exactly k; times is the
multinomial probability:

n
P(side i shows up k; times) = <k1 o 1 )p'flpé” - 'PES-
) b b S

Finally, suppose that an urn contains r red and g green balls. If n balls are drawn
without replacement then

™N( 9

(o) G2

(r+g)

n

More generally, if the urn contains r; balls of color i for i = 1,2, ..., s then the probability
of getting exactly k; balls of color ¢ is

P(k red) =

(er) Gea) - (&2)
ri+ret-+rs :
(k1+k2+'"+ks)

P(k; balls of color i) =

These formulas go by a silly name: hypergeometric probability.
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2 Algebra of Random Variables

2.1 Definition of Discrete Random Variables

We have finished covering the basics probability. The next section of the course is about
“random variables.” To motivate the definition, let me ask a couple of silly questions.

Silly Question. Suppose that an urn contains 1 red ball, 1 green ball and 1 blue ball. If you
reach in and grab one ball, what is the average (or expected) outcome?

Silly Answer. The sample space is S = {red, green, blue}. If the outcomes are equally likely
then to compute the average we simply add up the outcomes and divide by #S = 3:
red + green + blue 1 1

1
3 =§-red+§-green+§~blue.

average =

More generally, suppose that the outcomes have probabilities
P(red) = p, P(green) = ¢ and P(blue) = r.
In this case we should use the weighted average:

weighted average = P(red) - red + P(green) - green + P(blue) - blue
= p-red + ¢ - green + r - blue.

Note that this agrees with our previous answer when p = ¢ =r = 1/3.
Of course this silly question and answer make no sense. Here’s a less silly example.

Less Silly Question. A student’s final grade in a certain course is based on their scores on
three exams. Suppose that the student receives the following grades:

‘ Exam 1 ‘ Exam 2 ‘ Exam 3

Grade ‘ A ‘ B- ‘ A-

Use this information to compute the student’s final grade.

Less Silly Answer. The instructor will assign non-negative weights p,q,7 = 0 to the three
exams so that p + ¢ + r = 1. The student’s final grade is a weighted average:

final grade = p- (A) +¢- (B-) +r- (A-).

In particular, if the exams are equally weighted then we obtain

final grade =

Wl =



This is still nonsense. It is meaningless to compute the average of the three symbols A, B- and
A- because these symbols are not numbers. However, this example is not completely silly
because we know that similar computations are performed every day. In order to compute the
final grade using this method we need to have some scheme for converting letter grades into
numbers. There is no best way to do this but here is one popular scheme (called the Grade
Point Average):

Letter | GPA
A 4.00
A- 3.67
B+ 3.33
B 3.00
B- 2.67
etc. etc.

For example, if the exams are equally weighted then our hypothetical student’s final GPA is

4.00 + 2.67 + 3.67
3

= 3.45,

which I guess translates to a high B —l—P;g] Thus we see that for some purposes it is necessary to
convert the outcomes of an experiment into numbers. This is the idea of a random variable.

( )

Definition of Random Variable

Let S be the sample space of an experiment. The outcomes can take any form such as
colors, letters, or brands of cat food. A random wvariable is any function X that converts
outcomes into real numbers:

X:95 >R

For a given outcome s € S we use the functional notation X(s) € R to denote the

associated real number.
\_ J

We have already seen several examples of random variables. For example, suppose that a coin
is flipped 3 times. Let us encode the outcomes as strings of the symbols H and T, so the
sample space is

S = {TTT,TTH,THT, HTT, THH, HTH, HHT, HHH}.

181 want to emphasize that I do not use any such scheme in my teaching. Instead, I keep all scores in numerical
form throughout the semester and only convert to letter grades at the very end. I sometimes estimate grade
ranges for individual exams, but these can only be approximations.
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Let X be the number of heads that we get. We can think of this as a function X : § - R
that takes in a string of symbols s € S and spits out the number X (s) of Hs that this string
contains. Here is a table showing the “graph” of this function:

s ‘TTT‘TTH‘THT‘HTT‘THH‘HTH‘HHT‘HHH
X o[ v ] 1 v ] 2| 2| 2| 3

We will use the notation Sy € R to denote the set of all possible values of the random variable
X, which we call the “support” of the random variable. In this example we have

Sx ={0,1,2,3}.

If the support is a finite set or an infinite discrete set of numbers then we say that X is a
“discrete random variable.”

( )

Definition of Discrete Random Variable

Let X : S — R be a random variable. The set of possible values Sx is called the support:
Sx = {all possible values of X} = {X(s) : s€ S}.

If the support is finite (for example Sx = {1,2,3}) or if it is infinite and discrete (for
example Sx = {1,2,3,...}) then we say that X is a discrete random variable. An example
of a non-discrete (continuous) infinite set is the real interval

[0,1]]={zeR:0<z <1}

We are not yet ready to discuss continuous random variables.
\. Y,

Let X : S — R be a discrete random variable. For each number k € R we define the event
{X =k} = {all outcomes s € S such that X(s) =k} ={se S : X(s) = k}.
From our previous example we have
(X = 0} = (17T},
{X =1} ={TTH,THT,HTT},
{X =2} ={THH,HTH,HHT},
{X =3} ={HHH}.

For any value of k not in the support of X we have {X = k} = ¢, since there are no outcomes
corresponding to this value. Note that the sample space S is partitioned by the events {X = k}
for all values of k € Sx. In our example we have

S={X=O}u{X=1}u{X=2}u{X:3}=O{X:kz}
k=0
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and in general we use the notation

S=|J{x =k

keSx
and we denote the probability of the event {X = k} by
P(X =k)=P{X =k}).

Since the events {X = k} are mutually exclusive (indeed, each outcome of the experiment
corresponds to only one value of X'), Kolmogorov’s Rules 2 and 3 tell us that the probabilities
add to 1:

S=|J{xX =k

keSx
P(S)= Y P({X =k})
keSx
1= > P(X=k).
keSx

Observe that we have {X = k} = ¥ and hence P(X = k) = P() = 0 for any number k that
is not in the support of X. For example: If X is the number of heads that occur in 5 flips of
a fair coin then P(X = -2) = P(X =7) = P(X =3/2) = 0.

Sometimes it is convenient to describe a random variable X in terms of the numbers P(X = k)
without even mentioning the underlying experiment. This is the idea of a “probability mass
function.”

( )
Definition of Probability Mass Function (pmf)

Let X : § — R be a discrete random variable with support Sx © X. The probability
mass function (pmf) of X is the real-valued function fx : R — R that sends each real
number £ to the probability P(X = k). In other words, we define

P(X =k) ifke Sy,
0 if k¢ Sx.
Kolmogorov’s three rules of probability imply that the pmf satisfies
e For all k € R we have fx(k) > 0.

e For any set of possible values A € Sx we have

P(XeA) =) P(X =k =) fx(k).

keA keA
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e The sum over all possible values of k is

1= > P(X =k = > fx(k).

kESX kESX

The nice thing about the probability mass function fx : R — R is that we can draw its graph,
and there are two basic ways to do this. Consider again our running example where X is the
number of heads in 3 flips of a fair coin. In this case the pmf is

(/8 if ke {0,1,2,3},

0 otherwise.

fx(k) = P(X = k) = {
If we draw this function very literally then we obtain the so-called line graph:

PX=k)

A
3z 4 o ®
1e 1
SN [
o 1 2 3 k

In this picture the probability is represented by the lengths of the line segments. However, it
is also common to replace each line segment by a rectangle of the same height and with width
equal to 1. We call this the probability histogram:

PXX=k)
a/g |
/3 T
I\
R+ /f o
'/ ff/ z
; A A
A
o 1 2 13 ke
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In this case probability is represented by the areas of the rectangles. The line graph of a
discrete random variable is more mathematically correct than the histogram@ The main
benefit of the histogram is that it will allow us later to make the transition from discrete to
continuous random variables, for which probability is represented as the area under a smooth
curve.

To complete the section, here is a more interesting example.

More Interesting Example. Roll two fair 6-sided dice and let X be the maximum of the
two numbers that show up. We will assume that the two dice are ordered since this makes the
#S = 36 outcomes equally likely. Note that the support of X is Sx = {1,2,3,4,5,6}. Here is
a diagram of the sample space with the events {X = k} labeled:

54 52,53, 54, Sgg'é

k‘123456

_ 1 3 5 7 9 1
P(X - k) ‘ 36 36 36 36 36 36

This information allows us to draw the line graph and probability histogram:

9For example, see what happens when two possible values k,f € Sx are separated by less than one unit.
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Sometimes it is possible to find an algebraic formula for the pmf. In this case, one might
notice that the probability values lie along a straight line. After a bit of work, one can find
the equation of this line:

2k—1
k) _ 36 1fk€{1,2,3,4,5,6},
0 otherwise.

However, not all probability mass functions can be expressed with a nice formula.

2.2 Expected Value

So far we have seen that discrete probability can be visualized as a length (in the line graph)
or as an area (in the probability histogram). So why do we call it the probability mass
function?

To understand this we should think of the pmf fx (k) = P(X = k) as a distribution of point
masses along the real line. For example, consider a strange coin with P(H) = 1/3 and let X
be the number of heads obtained when the coin is flipped 4 times. By now we can compute
these probabilities in our sleep:

But here’s a new question.

Question. If we perform this experiment many times, how many heads to we expect to get
on average? In other words, what is the expected value of the random variable X7

In order to answer this question it is surprisingly necessary to view the probabilities P(X = k)
as point masses arranged along a line:
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In order to compute the “balance point” or the “center of mass” we will now borrow a principle

from physics.

é )

Archimedes’ Law of the Lever

Suppose that two point masses mq and mo lie on a balance board at distances dy and do,

respectively, from the fulcrum.

Archimedes says that the system will balance precisely when

d1m1 = d2m2.

First let us consider a random variable X that can only take two values Sx = {ki, k2} and let
us suppose that k1 < ko. If we let u = E[X] denote the mean or the expected valu@ then we

obtain the following picture:

20The letter p is for mean and the letter F is for expected value.
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In the picture we have assumed that k1 < p < ko, which turns out to be true, but it doesn’t
matter because the math will work out in any case. Observe that the point masses P(X = k1)
and P(X = ko) have distances u — k1 and ko — u, respectively, from the fulcrum. Thus,
according to Archimedes, the system will balance precisely when

(b —k1)P(X = k1) = (k2 — p) P(X = k2).

We can solve this equation for p to obtain

and since P(X = k1) + P(X = kz) = 1 this simplifies to
MZkl'P(XZle)Jer'P(X:kQ).

The same computation can be carried out for random variables with more than two possible
values. This motivates the following definition.

Definition of Expected Value

Let X : S — R be a discrete random variable with support Sy < R. Let fx (k) = P(X =
k) be the associated probability mass function. Then we define the mean or the expected
value of X by the following formula:

p=E[X]= > k-P(X =k = > k-fx(k)

k:ESX kESX

The intuition is that p is the center of mass for the probability mass function.
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C J

In our previous example we had Sy = {0, 1,2,3,4}. Then applying the formula gives

E[X]= ) k-P(X =k)
keSx

:ik-P(sz)
k=0

—0-P(X=0+1-P(X=1)+2-P(X =2)+3-P(X =3)+4- P(X = 4)

16 32 24 8 1

=0-—4+1-—+2.— 44—
0 818l 81+3 s1 TRl

_0+32+48+244+4 108 4

N 81 81 3

Interpretation. Consider a coin with P(H) = 1/3. This should mean that heads shows up
on average 1/3 of the time. If we flip the coin 4 times then we expect that 1/3 of these flips
will show heads; in other words, heads should show up (1/3) x 4 = 4/3 times. This confirms
that our method of calculation was reasonable. It is remarkable that Archimedes’ Law of the
Lever helps to solve problems like this.

A Partly General Example. Consider a strange coin with P(H) = p and P(T') = q. Let
X be the number of heads obtained when the coin is flipped 3 times. We have the following
pmf:

k ‘ 0 1 2 3

P(X = k) \ ¢ 3pg® 3pq p.
Then the formula for expected value gives

E[X]= Y| k-P(X =k)

keSx
—0-P(X=0)+1-P(X=1)4+2-P(X =2)+3-P(X =3)
=0-¢>+1-3pg® +2-3p’q+3-p°

= 310q2 +6p2q+3p3

= 3p(¢” + 2pq + p°)

=3p(p + q)*.

Since p 4+ ¢ = 1 this simplifies to F[X] = 3p. In other words, if p is the average proportion of
flips that show heads then in 3 flips we expect to get 3p heads. That makes sense.

A Fully General Example. Consider a strange coin with P(H) = p and P(T) = q. Let
X be the number of heads obtained when the coin is flipped k& times. We have the following
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binomial pmf:

Then the formula for expected value gives

E[X] = k-P(X =k)
keSx
= znl k-P(X =k)
k=0
_ (7 kg
kE_O (k)p q

Wow, this is a complicated formula. On the other hand, since P(H) = p is the average
proportion of flips that show heads, our intuition tells us that

(expected number of heads) = (number of flips) x (expected proportion of heads)
E[X] = np.

So what can we do? On Exercise 3.8 below you will use some algebraic tricks and the binomial
theorem to show that the complicated formula above really does simplify to np. However, there
is a much better way to solve this problem which is based on general properties of the function
E[X]. We will discuss this in the next section.

2.3 Linearity of Expectation

In the last section we defined the expected value as the “center of mass” of a discrete probability
distribution. In this section we will develop a totally different point of view. First let me
describe how old random variables can be combined to form new ones.

4 )
The Algebra of Random Variables

Consider a fixed sample space S. Random variables on this space are just real valued
functions S — R and as such they can be added and subtracted, multiplied (but not nec-
essarily divided) and scaled by constants. To be specific, consider two random variables

X, Y:S5—>R.
Their sum is the function X +Y : S — R defined by the formula
(X +Y)(s) = X(s)+Y(s) for all se S

and their product is the function XY : S — R defined by the formula

(XY)(s) = X(s)-Y(s) for all se S.
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Furthermore, if @ € R is any constant (“scalar”) then we define the function X : S — R
by the formula
(aX)(s) =a-X(s) for all s€ S.

Next let me give you an alternate formula for the expected value.

( )

Alternate Formula for Expected Value

Let X : S — R be a discrete random variable with support Sx < R. For any outcome
s € S we will write P(s) = P({s}) for the probability of the simple event {s} < S. Then
I claim that

E[X]= > k-P(X =k) =) X(s)- P(s).

k‘ESX seS

Instead of giving the proof right away, here’s an example to demonstrate that the formula is
true. Suppose that a coin with P(H) = p and P(T) = q is flipped twice and let X be the
number of heads obtained. The pmf is given by the following table:

k ‘0 1 2
P(X =k | 2pq p?

Then our original formula for expected value gives
E[X]=0-P(X=0)+1-P(X=1)+2-P(X =2)
= 0¢° + 2pq + 2p*
=2p(q +p)
= 2p.

On the other hand, note that our sample space is
S = {TT,TH,HT, HH}.
The values of P(s) and X (s) for each outcome s € S are listed in the following table:

s |TT TH HT HH

P(s)| ¢* pg pg P

X(s)[ 0o 1 1 2

Then we observe that our new formula gives the same answer:

E[X] = X(TT)-P(TT) + X(TH) - P(TH) + X(HT) - P(HT) + X (HH) - P(HH)
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=0-¢*+1-pg+1-pg+2-p?
= Oq2 4—2pq+2p2

= 2p(q +p)

= 2p.

The reason we got the same answer is because the probability P(X = 1) can be computed by
summing over all outcomes in the set {X =1} = {T'H, HT'}:

{(X=1}={TH} v {HT}
P(X =1)=P(TH)+ P(HT).
More generally, if X : § — R is any discrete random variable then for any k£ the probability
P(X = k) can be expressed as the sum of probabilities P(s) over all outcomes s € S such that
X(s) =k:
P(X=ky= >  P(s)

seS: X (s)=k

And since for each k in this sum we have k = X (s) it follows that

k-P(X =Fk)=k Yo P)|= > k-P(s)= > X(s)-P(s).

seS: X (s)=k seS: X (s)=k seS: X (s)=k

Finally, summing over all values of k£ gives the desired proof. In my experience students don’t
like this proof so feel free to skip it if you want. It doesn’t really say anything interesting.

Proof of the Alternate Formula.

D X(s)-P(s)= >, > X(s)-P(s)

ses keSx seS: X (s)=k

DI D X(s)-P(s)

keSx s€S: X (s)=k

YD k-P(s)

keSx s€S: X (s)=k

Dk > P(s)

keSx seS: X (s)=k
= > k-P(X=k)
kGSX

O]

The reason I am telling you this is because it leads to the most important property of the
expected value.
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Expectation is Linear

Consider an experiment with sample space S. Let X,Y : S — R be any two random
variables on this sample space and let a, 8 € R be any constants. Then we have

E[aX + BY] = a- E[X] + 8- E[Y].

Remark: The study of expected values brings us very close to the subject called “linear
algebra.” This statement just says that expected value is a “linear function” on the

algebra of random variables.
L J

This would be very hard to explain in terms of the old formula E[X] = >, k- P(X = k).
However, it becomes almost trivial when we use the new formula E[X] = >, X (s) - P(s).

Proof of Linearity. By definition of the random variable aX + fY we have

ElaX + pY] = Z(aX + BY)(s)P(s)

- Si[ax(s) +BY (s)] - P(s)

- is [aX (s)P(s) + BY (s)P(s)]

_ siaX(s)P(s) + ZSBY(S)P(S)
_ ;esezsx(s)P(s) +S;S€ZSY(S)P(S)

=a-E[X]|+ 3 E[Y].
O
Warning. This theorem says that the expected value preserves addition/subtraction of ran-
dom variables and scaling of random variables by constants. I want to emphasize, however,

that the expected value does not (in general) preserve multiplication of random variables.
That is, for general random variable?T] X, Y : S — R we will have

E[XY] # E[X]- E[Y].
In particular, when Y = X we typically have

E[X?] # E[X]%.

2!The important exception is when the random variables X,Y are independent. See below.
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This will be important below when we discuss variance.

To demonstrate that all of this abstraction is worthwhile, here is the good way to compute the
expected value of a binomial random variable. First I'll give the case n = 2 as an example.

Expected Value of a Binomial Random Variable (n = 2). Consider again a coin with
P(H) = p and P(T) = q. Suppose the coin is flipped twice and consider the random variables

1 if I1st flipis H 1 if 2nd flip is H
1= and Xy =
0 if Ist flipis T 0 if 2nd flip is 7.

The following table displays the probability of each outcome s € S together with the values of
X; and X5 and their sum X = X7 + Xo:

s TT TH HT HH
P(s) ¢ pqg pqg P
X1(s) o 0 1 1
Xs(s) 0 1 0 1

X(s)=Xi1(s) + Xa(s) | O 1 1 2

Observe that the sum X = X; + X5 is just the total number of heads. Thus in order to
compute the expected value E[X] it is enough to compute the expected values F[X;] and
E[X2] and then add them together. And since each random variable X; only has two possible
values, this is easy to do. For example, here is the pmf for the random variable X;:

E 0 | 1
P(X,=k) | P(TT) + P(TH) = ¢ + pq = q | P(HT) + P(HH) = pg + p? = p.

Then we compute
E[Xi]=0-P(X;=0+1-P(X;=1)=0-gq+1-p=0p

and a similar computation gives E[X3]| = p. We conclude that the expected number of heads
in two flips of a coin is

E[X] = E[X1 + X5] = E[X1] + E[X2] =p +p = 2p.

Here is the general case.
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Expected Value of a Binomial Random Variable

Consider a coin with P(H) = p. Suppose the coin is flipped n times and let X be the
number of heads that appear. Then the expected value of X is

E[X] = np.

Proof. For each i = 1,2,...,n let us consider the random VariableF_ZI

_ )1 if the sth flip is H,
" 10 if the 4th flip is 7.

By ignoring all of the other flips we see that P(X; = 0) = P(T') = gand P(X; =1) = P(H) =
p, which implies that

E[X;]=0-P(X;=0)+1-P(X;=1)=0-q+1-p=p.

The formula E[X;] = p says that (on average) we expect to get p heads on the ith flip. That
sounds reasonable, I guess. Then by adding up the random variables X; we obtain the total
number of heads:

n

(total # heads) = 2 (# heads on the ith flip)
i=1
X=X1+Xo+ -+ X,

Finally, we can use the linearity of expectation to compute the expected number of heads:

E[X]=E[X1+ X2+ -+ X,
= E[X1]+ E[X2] + -+ + E[X,]
_
n times

= np.

You may find the same trick useful on Exercise 3.7 below.

22 Any random variable with support {0,1} is called a Bernoulli random variable. Thus we have one more
random variable with a needlessly complicated name.
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2.4 Variance and Standard Deviation

The expected value is useful but it doesn’t tell us everything about a distribution. For example,
consider the following two random variables:

e Roll a fair six-sided die with sides labeled 1,2,3,4,5,6 and let X be the number that
shows up.

e Roll a fair six-sided die with sides labeled 3,3,3,4,4,4 and let Y be the number that
shows up.

To compute the expected value of X we note that X has support Sx = {1,2,3,4,5,6} with
P(X =k)=1/6 for all ke Sx. Hence

E[X]=1-P(X=1)+2-P(X =2)+ - +6-P(X =6)

=1 1-+2 1-+3 1-+4 1-+5 1—%6 1-—21——35
6 6 6 6 6 6 6

And to compute the expected value of Y we note that Y has support Sy = {3,4} with
P(Y =3)=P(Y =4) = 1/2. Hence

1 1
E[Y]=3-P<Y=3)+4-P(Y=4)=3-§+4.§:g:3.5.

We conclude that X that Y have the same expected value. But they certainly do not have
the same distribution, as we can see in the following line graphs:

P(X=k) P(Y =k
A
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We see that both distributions are centered around 3.5 but the distribution of X is more
“spread out” than the distribution of Y. We would like to attach some number to each
distribution to give a measure of this spread, and to verify quantitatively that

spread(X) > spread(Y').
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r
The Idea of “Spread”

Let X be a random variable with expected value p = E[X], also called the mean of X.
We want to answer the following question:

On average, how far away is X from its mean p?

The most obvious way to answer this question is to consider the difference X — p. Since p is
constant we know that F[u] = p. Then by using the linearity of expectation we compute the
average value of X — p:

EX —p] = E[X]-E[p] =p—p=0.

Oops. Maybe we should have seen this coming. Since X spends half its time to the right of
w1 and half its time to the left of p it makes sense that the differences cancel out. We can fix
this problem by considering the distance between X and p, which is the absolute value of the
difference:

| X — p| = distance between X and pu.

We will define the sprea@ of X as the average distance between X and u:
spread(X) = E[| X — ul].

To see if this is reasonable let’s compute the spread of the random variables X and Y from
above. Unfortunately, the function | X — u| is a bit complicated so we have to go back to the
explicit formula:
ElIX — ] = S 1X(s) -l - P(s).
seS
To compute the spread of X we form the following table:

S face 1 face 2 face 3 face 4 face 5 face 6
X(s) 1 2 3 4 5 6
1 3.5 3.5 3.5 3.5 3.5 3.5
IX(s)—p/| 25 15 05 05 15 25
P(s) 1/6 1/6 1/6 1/6 1/6 1/6

Then we apply the formula to get

B[X - uf] - (2.5)% + (1.5)% + (0.5)% é + (1.5)% +(@5)g =2 =15

23Warning: This is not standard terminology. As far as I know there is no standard terminology for this
concept.

+ (0.5) N

84



We conclude that, on average, the random variable X has a distance of 1.5 from its mean. To
compute the spread of Y we form the following table:

S face 1 face 2 face 3 face4 faced face6
Y (s) 3 3 3 4 4 4
I 3.5 3.5 3.5 3.5 3.5 3.5
Y(s)—pul| 0.5 0.5 0.5 0.5 0.5 0.5
P(s) 1/6 1/6 1/6 1/6 1/6 1/6

Then we apply the formula to get

B[V — uf] - (0.5% + (0.5% + (0.5% + (0.5% + (0.5% + (0.5% _ 6(%5) _ 0.5,

We conclude that, on average, the random variable Y has a distance of 0.5 from its mean. (In
fact, the distance |Y — p| is constantly equal to 0.5.) This confirms our earlier intuition that

1.5 = spread(X) > spread(Y) = 0.5.

Now the bad news. Even though our definition of “spread” is very reasonable, this definition
is not commonly used. The main reason we don’t use it is because the absolute value function
is not very algebraic. To make the algebra work out more smoothly we prefer to work with
the square of the distance between X and u:

(distance between X and p)? = | X — p|?> = (X — p)2.

Notice that when we do this the absolute value signs disappear.

~\

Definition of Variance and Standard Deviation

Let X be a random variable with mean y = E[X]. We define the variance as the expected
value of the squared distance between X and pu:

Var(X) = 0 = E [(X — p)?].

Then because we feel remorse about squaring the distance, we try to correct the situation
by defining the standard deviation o as the square root of the variance:

o = /Var(X) = VE[(X - )?].
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In general, the standard deviation is bigger than the spread defined above:

spread(X) < o
BX - ul) < VETX — ).

But we prefer it because it has nice theoretical properties and it is easier to compute. For
example, we could compute the standard deviations of X and Y using the same method as
beforeff] but there is a quicker way.

~\
Trick for Computing Variance
Let X be a random variable. Then we have
Var(X) = E[X?] — E[X]?.
\. Y,

Proof. Since p is a constant we have E[u] = p and E[u?] = p?. Now the linearity of

expectation gives

Var(X) =

Remark: Since variance is always non-negative, this implies in general that
Var(X) = E[X?] - E[X]*>0
E[X?] = E[X]%.

It follows from this that we have E[X?] = E[X]? if and only Var(X) = 0, which happens if
and only if X is constant (i.e., pretty much never).

Let’s apply this formula to our examples. We already know that E[X]| = 21/6 = 3.5. In order
to compute E[X?] we use the following general principle.

2Ty it!
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Definition of Moments

Let X be a discrete random variable. For each whole number r > 0 we define the rth
moment of X as the expected value of the rth power X”. By definition this is

E[X"]= ) K -P(X = k).
keSx

To compute the second moment of X we form the following table:
k 1 2 3 4 5 6

k2 1 4 9 16 25 36

P(X=k)|1/6 1/6 1/6 1/6 1/6 1/6

We find that
E[X?]=12.P(X =1)+22-P(X=2)+---+6%- P(X =6)
=1 1+4 1+9 1+16 1+25 1+36 1_9
6 6 6 6 6 6 6

Then the variance is

1 /21\* 1
0% = Var(X) = E[X?] - E[X]* = aq_ <6> = % = 2.92

and the standard deviation9 is

105
ox = ’\/V&I'(X) = % = 1.707.
The computation for Y is even easier. First we form the table
k 3 4
k2 9 16
PY=k)|1/2 1)2

1 1 7
E[Y]=3-P(X =3)+4-P(X =4)=3-5+4-5 =5,
the second moment
1 1 2
E[YQ]:32'P(X=3)+42-P(X=4)=9~§+16-§=‘25

2 . . . . .
5We use a subscript on o when there is more than one random variable under discussion.
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the variance

Var(Y) = E[Y?] — E[Y] = 2 — (7>2 1

and the standard deviation

1 1
oy = ’\/V&I‘(Y) = Z = 5 = 0.5.

In summary, let us compare the standard deviations to the spreads we computed above:

1.5 = spread(X) < ox = 1.707
0.5 = spread(Y) < oy = 0.5.
The standard deviation of X is slightly larger than its spread but we still have

ox > 0y,

which quantifies our observation that the distribution of X is more “spread out” than the
distribution of Y. We have now discussed the first two moments of a random variable. In
further probability and statistics courses you will consider the entire sequence of moments:

E[X],E[X?],E[X?],E[X1],....

Under nice circumstances it turns out that knowing this sequence is equivalent to knowing
the probability mass function. But the first two moments will be good enough for us.

To end this section I will collect some useful formulas explaining how expectation and variance
behave with respect to constants.

2
Useful Formulas
Let X : S — R be any random variable and let « € R be any constant. Then we have
Ela] = « Var(a) = 0
ElaX] = aFE[X] Var(aX) = o?Var(X)
E[X+a] = EX]+a Var(X + o) = Var(X).
\. J

We already know these formulas for the expected value; I just included them for comparison.

Proof. For the first statement note that E[a] = a and E[a?] = a?. Then we have

Var(a) = E[0?] — E[a]? = o —a® = 0.
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For the second statement we have

Var(aX) = E[(aX)?] — E[aX]?
= E[a*X?] - (aE[X]
= o’E[X?] - *E[X]
= o’ (BE[X?] — B[X]?)
= o*Var(X).

For the third statement note that E[X + a] = E[X] + «. Then we have
Var(X + a) = E [((X +a)— B[X + a])2]

— B [((X +.) — (E[X] —))*]
— B[(X - B[X])?]
= Var(X).

O

The idea behind the first statement is that a constant has no variance. This makes sense from
the line diagram:

N /\l'\,t, g?ma,at
\ 1S eI o

= 7k

The idea behind the third statement is that shifting a distribution to the right doesn’t change
its spread. Here is a picture of the situation:
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Same Variance

>,
7/

AifFerent éxype che & valie

After seeing how variance interacts with constants, you might wonder how variance interacts
with addition of random variables:

Var(X +Y) = ?

We will discuss this in the next section.

Exercises 3

3.1. Consider a coin with P(H) = p and P(T) = ¢. Flip the coin until the first head shows
up and let X be the number of flips you made. The probability mass function and support of
this geometric random vabiable are given by

P(X =k)=¢"1p and Sx ={1,2,3,...}.

(a) Use the geometric series 1 + ¢+ ¢> + -+ = (1 — g)~! to show that
Y PX=k=1
kESX
(b) Differentiate the geometric series to get 0 4+ 1+ 2¢ 4+ 3¢? 4+ --- = (1 — ¢)~2 and use this

series to show that

E[X]= )] k-P(sz)zl.

kESX p

(c) Application: Start rolling a fair 6-sided die. On average, how long do you have to wait
until you see “1” for the first time?
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3.2. There are 2 red balls and 4 green balls in an urn. Suppose you grab 3 balls without
replacement and let X be the number of red balls you get.

(a) What is the support of this random variable?
(b) Draw a picture of the probability mass function fx (k) = P(X = k).

(c) Compute the expected value E[X]. Does the answer make sense?

3.3. Roll a pair of fair 6-sided dice and consider the following random variables:

X = the number that shows up on the first roll,

Y = the number that shows up on the second roll.
(a) Write down all elements of the sample space S.

(b) Compute the probability mass function for the sum fx,y (k) = P(X+Y = k) and draw
the probability histogram.

(c) Compute the expected value E[X + Y] in two different ways.

(d) Compute the probability mass function for the difference fx_y (k) = P(X =Y = k) and
draw the probability histogram.

(e) Compute the expected value E[X — Y] in two different ways.
(f) Compute the probability mass function for the absolute value of the difference
fix—y|(k) = P(IX = Y[ = k)
and draw the probability histogram.

(e) Compute the expected value E [|X — Y|]. This time there is only one way to do it.

3.4. Let X be a random variable satisfying
E[X+1]=3 and  E[(X +1)%] =10.
Use this information to compute the following:

Var(X +1), E[X], E[X?] and Var(X).

3.5. Let X be a random variable with mean E[X] = p and variance Var(X) = o2 # 0.
Compute the mean and variance of the random variable Y defined by
X —p

Y = .
o

3.6. Let X be the number of strangers you must talk to until you find someone who shares
your birthday. (Assume that each day of the year is equally likely and ignore February 29.)
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(a) Find the probability mass function P(X = k).
(b) Find the expected value p = E[X].

(¢) Find the cumulative mass function P(X < k). Hint: If X is a geometric random variable
with pmf P(X = k) = ¢"'p, use the geometric series to show that

ee}
PX<k)=1-P(X>k)=1- > ¢ 'p=1-¢"
i=k+1

(d) Use part (c) to find the probability P(u — 50 < X < p+ 50) that X falls within +50 of
the expected value. Hint:

P(p—50 < X < p+50) = P(X < pn+50) — P(X < pp— 50— 1).

3.7. I am running a lottery. I will sell 10 tickets, each for a price of $1. The person who buys
the winning ticket will receive a cash prize of $5.

(a) If you buy one ticket, what is the expected value of your profit?
(b) If you buy two tickets, what is the expected value of your profit?

(¢) If you buy n tickets (0 < n < 10), what is the expected value of your profit? Which
value of n maximizes your expected profit?

[Remark: Profit equals prize money minus cost of the tickets.]

3.8. Consider a coin with P(H) = p and P(T) = q. Flip the coin n times and let X be the
number of heads you get. In this problem you will give a bad proof that E[X] = np.

(a) Use the formula (}) to show that k(}) = n(nfl).

_ n!
T Ekl(n—k)! k—1

(b) Complete the following computation:



2.5 Covariance

Let us try to compute the variance of our favorite binomial random variable.

Example. Let X be the number of heads of obtained in n flips of a coin, where P(H) = p
and P(T) = q. We already know that the first moment is E[X ]| = np. In order to compute the
variance we also need to know the second moment E[X?]. Let us try some small examples.
If n = 2 then we have the following table:

Thus the second moment is

E[X*]=0°-P(X=0)+1>-P(X =1)+2>-P(X =2)
—0-¢®>+1-2qp+4-p°
= 2p(q + 2p)

and the variance is
Var(X) = E[X?] — E[X]* = 2p(q + 2p) — (2p)* = 2p(q + 28 — 20) = 2pq.

If n = 3 then we have the following table:

P(X =k)| ¢ 3qp° 3¢°p p°
Then since p + ¢ = 1 the second moment is
E[X*=0"-PX=0)+1'.P(X=1)+2> P(X =2)+ 3% P(X =3)
=0-¢°+1-3¢°p+4-3¢p* +9-p°
= 3p(q® + 4qp + 3p°)

= 3p(q + 3p)(q + p)
= 3p(q + 3p)

and the variance is
Var(X) = E[X?] — E[X]? = 3p(q + 3p) — (3p)* = 3p(q + 36 — 3p) = 3pq.

At this point we can guess the general formula.
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( )

Variance of a Binomial Random Variable

Consider a coin with P(H) = p and P(T) = ¢q. Suppose the coin is flipped n times and
let X be the number of heads that appear. Then the variance of X is

Var(X) = npg.

Let’s see if we can prove it.

The Bad Way. The pmf of a binomial random variable is

P(X =k) = <Z) P,

With a lot of algebraic manipulations, one could show that
n
E[X* =) K P(X =k)

n e
k=0

= (some tricks)

p(q+np)(qg+p
p(q + np).

|
M=

)n—2

I
S

3

But you know from experience that this will not be fun. Then we conclude that

Var(X) = E[X?] — E[X]? = np(q + np) — (np)* = np(q — np + np) = npg.

Surely there is a better way.

The Good Way. As before, we will express the binomial random variable X as a sum of
Bernoulli random variables. Define

. = 1 if the ith flip is H,
" )0 it the ith flip is T

The support of this random variable is Sx, = {0,1} with P(X; =0) = ¢ and P(X; = 1) = p.
Therefore we have

E[X;]=0-P(X;=0)4+1-P(X;=1)=0-q+1-p=p
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and
E[X?]=0*-P(X;=0)+1>-P(X;=1)=0-q+1-p=np,
and hence
Var(X) = E[X?] - E[X;]* = p—p* = p(1 - p) = pg.
Since X; is the number of heads obtained on the ith flip, the sum of these gives the total
number of heads:

n

(total # of heads) = Z (# heads on the ith flip)
i=1
X =Xi+Xot-+ Xn.

Finally, we apply the variance to both sides of the equation:

Var(X) = Var(X; + Xo + -+ - + X))
(7) = Var(X;) + Var(Xg) + - -+ + Var(X,,)
=pg+pg+---+pg
nt;;nes

This computation is correct, but I still haven’t explained why the step (?) is true.

Question. Why was it okay to replace the variance of the sum Var(X; + -+ + X,,) with the
sum of the variances Var(Xi) + --- + Var(X,,)?

Answer. This only worked because the random variables X; and X; are independent of
each other. In general, the variance of a sum is not equal to the sum of the variances. More
specifically, if X, Y are random variables on the same experiment then we will find that

Var(X +Y) = Var(X) + Var(Y) + (some junk),

where the junk is some number measuring the “correlation” between X and Y. When X and
Y are independent this number will be zero.

In the next few sections we will make the concepts of “correlation” and “independence” more
precise. First let’s find a formula for the junk. To keep track of the different expected values
we will write

px = E[X] and uy = E[Y].

Since the expected value is linear we have

E[X +Y]=E[X|+E[Y] = px + py.
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Now we compute the variance of X + Y directly from the definition:

Var(X +Y)=F [ X+Y)— (ux + uy)]g]

(
(

[
=F [[ X —px)+ (Y - MY)]2]
= B[(X —px)? + (Y — py)? + 2(X = px) (Y = py)]
= E[(X = ux)?] + E[(Y — py)?] + 2B [(X — px)(Y — py)]

= Var(X) + Var(Y) + 2 E[(X — px)(Y — py)]

This motivates the following definition.

Definition of Covariance

Let X,Y : S — R be random variables on the same experiment, with means px = E[X]
and py = E[Y]. We define their covariance as

Cov(X,Y) = E[(X — px)(Y — py)].
Equivalently, the covariance satisfies the following equation:

Var(X +Y) = Var(X) + Var(Y) + 2 Cov(X,Y).

Here are some basic observations.

e Since (X — pux)(Y —py) = (Y — uy)(X — px) we have
Cov(X,Y) = E[(X — pux)(Y — py)] = E[(Y puy)(X — px)] = Cov(Y, X).

In words: The covariance is symmetric.

e For any random variable X we have
Cov(X,X) = E[(X — px)(X — px)] = E[(X — px)?*] = Var(X).

In words: The variance of X equals the covariance of X with itself.

e For any random variable X and constant o we have u, = a and hence
Cov(X,a) = E[(X — px)(a—a)] = E[0] = 0.

In words: The covariance of anything with a constant is zero.
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Recall that the most important property of the expected value is its linearity:
ElaX + Y] = aE[X] + BE[Y].

We also observed that the variance is not linear. Now we are ready to state the important
property that variance does satisfy.

( )

Covariance is Bilinear

Let X,Y,Z : S — R be random variables on a sample space S and let «, 5 € R be any
constants. Then we have

Cov(aX + BY, Z) = aCov(X, Z) + BCov(Y, Z)

and
Cov(X,aY + BZ) = aCov(X,Y) + Cov(Y, 2).

Remark: If you have taken linear algebra then you will recognize that the covariance of
random variables behaves very much like the dot product of vectors.
. J

The proof is not difficult but it will be easier to write down after I give you a trick.

~\
Trick for Computing Covariance
Let X, Y be random variables on the same experiment. Then we have
Cov(X,Y) = E[XY]— E[X] - E[Y].
\. Y,

Proof. Define ux = E[X] and py = E[Y]. We will use the linearity of expectation and the
fact that pux and py are constants:

|
= B[XY — pxY — py X + pxpy]
= BE[XY]| - E[uxY] - Eluy X] + E[uxpy]
= E[XY] - uxE[Y] — py E[X] + pxpy
= B[XY]| — pxpy — pyp< + Uxpy
= E[XY] — uxpy
— E[XY] - E[X] - E[Y]



O]

Proof of Bilinearity. I will only prove the first statement. Then the second statement
follows from symmetry. According to the trick, the covariance Cov(aX + 8Y, Z) equals

E[(aX + fY)Z] — E[aX + 8Y] - E[Z]

— ElaXZ + Y Z] — (aB[X] + BE[Y]) - E[Z]
(aE[XZ] + BE|Y Z]) — aE[X] - E|[Z] — BE[Y] - E[Z]
o (E[XZ) - B[X] E[Z]) + 8 (E[Y Z] - E[Y]- E[Z])
= aCov(X, Z) + fCov(Y, Z).

O
That’s more than enough proofs for today. Let me finish this section by computing an example.

Example of Covariance. Suppose a coin is flipped twice. Consider the random variables:

X = {number of heads on 1st flip},
Y = {number of heads on 2nd flip},
Z = {total number of heads}.

Our intuition tells us that X and Y are independent, so we expect that Cov(X,Y) = 0.
Our intuition also tells us that X and Z are not independent. In fact, we expect that
Cov(X, Z) > 0 because an increase in X causes an increase in Z. In this case we say that X
and Z are “positively correlated.”

To compute the covariances we need to compute the expected values of X, Y, Z, XY, XZ
and Y Z. Since is it difficult to compute the probability mass functions for XY, XZ, Y Z we
will list the value of each random variable for each element of the sample space:

S Tl TH HT HH
X(s) o o 1 1
Ys) |0 1 0 1
Z(s) |0 1 1 2
X(s)Y(s)| O 0 0 1
X(s)Z(s)| 0 0 1 2
Y(s)Z(s) | 0 1 0 2

Pis) | & a a p

Next we compute the expected values:

E[X] = 0¢* + 0gp + 1gp + 1p* = p(q + p) = p,
E[Y] = 0¢* + 1gp + Ogp + 1p* = p(q + p) = p,
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E[Z] = 0¢° + 1qp + 1qp + 2p* = 2p(q + p) = 2p,
E[XY] = 0¢> + Ogp + Ogp + 1p* = p2,
E[X Z] = 0¢* + Ogp + 1gp + 2p* = p(q + 2p)
E[Y Z] = 0¢* + 1qp + Ogp + 2p* = p(q + 2p)

And then we compute the covariances:
Cov(X,Y) = E[XY
Cov(X,Z) =E[XZ
Cov(Y,Z) = E|

|- E[X] - EY]=p"—p-p=0,
| - E[X]- E[Z] = p(q + 2p) —p- (2p) = pq,
YZ] - E[Y]-E[Z] = p(q+2p) —p- (2p) = pq.

As expected, we find that Cov(X,Y) = 0 and Cov(X, Z) = Cov(Y, Z) = pq > 0, at least when
the probabilities of heads and tails are both nonzero.

Finally, observe that Z = X +Y and recall that we already know the variance of the Bernoulli
random variable X:
Cov(X, X) = Var(X) = pq.

Thus we can verify the bilinearity of covariance:

Cov(X,Z) =Cov(X,X +Y) =Cov(X,X) + Cov(X,Y) = pg + 0 = pq.

2.6 Joint Distributions and Independence

In the previous example we computed the expected value F[X Y] by summing over all elements
of the sample space:

E[XY] = Y [(XY)(s)P(s) = > X ()Y (s5)P(s).
seS seS

Alternatively, we could write this as a sum over all possible values of X and Y. Let Sx and
Sy be the supports of these random variables. Then for all k € Sx and ¢ € Sy we have

P(X =kandY =0) =) P(s)

where the sum is over all outcomes s € S such that X(s) = k and Y (s) = ¢. By breaking up
the original sum over different values of k and ¢ we obtain

E[XY]= >, k-£-P(X=FkandY =2).
keSX,ZeSY

The joint probabilities P(X = k and Y = {) tell us everything there is to know about the
relationship between the random variables X and Y. The collection of all such numbers is
called the joint probability mass function.
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Joint and Marginal pmf’s

Let X,Y : § — R be discrete random variables with support Sx,Sy < R. Recall that
the probability mass functions of X and Y are defined by

P(X =k) if ke Sy,
0 if k¢ Sy,

P(Y =0) ifle Sy,

and - fy(6) = {0 if 0 ¢ Sy

We define the joint probability mass function fxy : R> — R as follows:

fxy(k,0) =P(X =k, Y =1/
PU{X =k} n{Y =1})
P(X =kandY =/).

The function fxy takes any two real numbers k, ¢ to a non-negative number fxy (k,?).
By summing over all values of Y and using the Law of Total Probability we recover the
marginal pmf of X:

(X=k}= [ J{X=kn{y =4

LeSy
P(X=k) =) PU{X =k}n{Y =1}
LeSy
fx(k) = D7 fxv(k,0)
LeSy

Similarly, we recover the marginal pmf of Y by summing over the possible values of X:

) = > fxv(k,0).

kGSX

Summing over all possible values of X and Y gives the number 1, as it should:

D1 vk ) =) fx(k) = ) () =1.

kESX ,EGSY k)GSX ZGSY

For random variables X, Y of finite support, we will record their joint pmf with a rectangular
table as follows:
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N X

Y I Y (% S B P (A

{
{

%x((m

We record the joint probabilities fxy (k, ) inside the table and we record the marginal prob-
abilities fx (k) and fy (¢) in the margins@ Note that each marginal probability equals the
sum of the joint probabilities in its row or column.

Example. For example, consider a coin with P(H) = 1/3. Flip the coin twicea and let

X = (# heads on the 1st flip),
Y = (# heads on the 1st flip),
Z = (total # heads) = X +Y.

Our intuition tells us that the events {X = k} and {Y = ¢} are independent for all possible
values of k£ and ¢. Therefore we can obtain the joint probabilities by multiplying the marginal
probabilities:

PUX =k} {Y = £}) = P(X = k) - P(Y = 0)
Ifxy(k, £) = fx(k) - fy(€).

Since the marginal probabilities are fx(0) = fy(0) = 2/3 and fx (1) = fy (1) = 1/3, we obtain
the following table:

26That’s why they’re called “marginal.”
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Y
% O ]
4 |2 iz/s
o 3 9
o 1
z 2
1 3 9 /3
2/3 1/3

Observe that the four entries in the table sum to 1 and that the two entries in each row and
column sum to the displayed marginal probabilities. We can use this table to compute any
probability related to X and Y. For example, the event {X < Y} corresponds to the following

cells of the table:

\(" o d /%MC\WYE

By adding the probabilities in these cells we obtain

4 2 1 7

Now let’s move on to the joint distribution of X and Z = X +Y. Each event {X = k}n{Z = ¢}
corresponds to at most one cell of the table above and two such events (when k,¢ = 0,1 and
when k, ¢ = 0,2) are empty. Here is the joint pmf table:
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z 1 ,
X © 3
—
o | 4 | Z o | Vs
! 9
A
1 e |5 & s

L{/D; L{/0; 4/‘)

This time we observe that the joint probabilities are not just the products of the marginal
probabilities. For example, the events {X = 0} and {Z = 0} are not independent because

P{X =0} {Z=0}) = ; # <§) (3) — P(X =0)- P(Z =0).

In such a case we say the random variables X and Z are not independent.

(

Independent Random Variables

Let X,Y : S — R be random variables with joint probability mass function fxy (k,?).
We say that X and Y are independent random wvariables when the joint pmf equals the

product of the marginal pmf’s:
fxv(k, €) = [x (k) - fy(£)
P{X =k}n{Y =¢})=P(X =k)-P(Y =1).

Equivalently, we say that the random variables X and Y are independent when the
events {X = k} and {Y = ¢} are independent for all values of k and .

J

\.

We have observed previously that independent random variables have zero covariance. Now
that we have an official definition of independence I can explain why this is true. Recall from

the beginning of this section that the expected value of XY is given by

EIXY]= > k-l fxy(k0).
keSx eSSy

More generally, we make the following definition.
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Definition of Mixed Moments

Let X,Y : S — R be discrete random variables with joint pmf fxy (k,¢). Then for all
whole numbers r > 0 and s > 0 we define the mized moment:

EIX'Y = > K- fxy(ko).
keSx ,leSy

In the case that X and Y are independent, then the mixed moments are just the products of
the moments of X and Y. That is, if X and Y are independent then for all 7, s > 0 we have

E[X"Y*] = E[X"]- E[Y?].

Proof. Let us assume that X and Y are independent so that fxy (k,¢) = fx(k) - fy(¢) for all
values of k and ¢. Then by definition of moments and mixed moments we have

E[X"]-E[Y*] = (Z k‘”fx(’f)) (Z ES-W))

keSx leSy
- Z Z K05 fx (k) - fy(0)
]CGSX ZGSY
= > K fxy(k D)
kESX,EESy
= E[X"Y?®].
O
In the special case that » = 1 and s = 1 we obtain the following important result.
2

Independent Implies Zero Covariance

Let X,Y : S — R be independent random variables, so that fxy(k,¢) = fx(k) - fy (¢).
Then from the previous discussion we have

E[XY] = E[X]- E[Y]

and it follows that the covariance is zero:

Cov(X,Y) = E[XY] — E[X]- E[Y] = 0.
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C J

The converse result, unfortunately, is not true. In the exercises below you will see an example
of two random variables X, Y that are not independent, yet they still satisfy Cov(X,Y) = 0.

Let me end the section by discussing a more interesting example.

More Interesting Example. Consider an urn containing 3 red balls, 2 white balls and 1
blue ball. Suppose that 3 balls are drawn from the urn with replacement and let

R = (# of red balls you get),
W = (# of white balls you get).

We can think of each draw as the roll of a die with three sides labeled {r,w,b}, where the
sides have the following probabilities:

P(side r) = 3/6,
P(side w) = 2/6,
P(side b) = 1/6.

If k£ red balls and ¢ white balls are drawn, then we know that 3 — k — £ blue balls are also
drawn. Thus the joint pmf of R and W is given by the multinomial distribution:

pia-rn-sor-o- (", ) E) (7

Recall that the multinomial coefficients are defined by

3 ey k> 0and k+0<3,
k0,3—k—1t)

0 otherwise.

Thus we have the following table:

R\W|o0o 1 2 3
0 | 6 12 s |1
216 216 216 216 8
9 36 36 3
L 1355 216 216 0 |38
27 54 3
2 si6 206 O 0 |§
27 1
3 |2 o o0 0|}
8 12 6 1
27 27 27 27




These random variables are certainly not independent because, for example, the joint proba-
bility frw (3,3) = 0 is not equal to the product of the marginal probabilities fr(3) = 1/8 and
fw(3) = 1/27. Tt it worth noting that each of R and W has a binomial distribution. Indeed,
for the event R we can view each roll of the die as a coin flip where “heads” = “red” and
“tails” = “not red.” Since P(red) = 1/2 we conclude that

=== Q) () ()
wia-ror-a- () (3 ()

Since we know the expected value and variance of a binomialﬂ this implies that

1 1 1 1 1 2

Similarly, we have

Now let us compute the covariance of R and W. Of course this can be done directly from the
table by using the formula

3
E[RW] = > k-L- frw(k,0).
k,0=0

Then we would compute Cov(R, W) = E[RW|— E[R]- E[W]. But there is a faster way. Note
that the sum R+ W is just the number of “red or white balls.” If we think of “heads” as “red
or white” and “tails” as “blue” then we see that R + W is a binomial random variable with
P(H) =5/6 and P(T) = 1/6. Hence the variance is

5 1 15
Finally, we conclude that

Var(R) + Var(W) + 2 - Cov(R, W) = Var(R + W
2. Cov(R,W) = Var(R + W) — Var(R) — Var(W)

15 3 3

2'COV(R,W) = %—i—g

2-Cov(R,W) =—1
Cov(R, W) = —1/2.

This confirms the fact that R and W are not independent. Since the covariance is negative
we say that R and W are “negatively correlated.” This means that as R goes up, W has a
tendency to go down, and vice versa.

2TExpected number of heads in n flips of a coin is n - P(H). The variance is n - P(H) - P(T).
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2.7 Correlation and Linear Regression

I have mentioned the word “correlation” several times. Now it’s time to give the formal
definition. If two random variables X,Y : S — R are independent, we have seen that their
covariance is zero. Indeed, if the joint pmf factors as fxy (k,¢) = fx(k)- fy (¢) then the mixed
moment E[XY] factors as follows:

E[XY] = Ek-g'fXY(kag)
Y]
=Dkt fx(k) - fy(0)
k0

ZEZk-f'fx(k)'fY(@
k /£

_ (;k-fx(k)> : (;E-fy(€)>

- E[X]- E[Y].

Thus we have Cov(X,Y) = E[XY] — E[X] - E[Y] = 0. The converse statement is not
true. That is, there exist non-independent random variables X,Y with Cov(X,Y) = 0.
Nevertheless, we still think of the covariance Cov(X,Y’) as some kind of measure of “non-
independence” or “correlation.” If Cov(X,Y) > 0 then we say that X and Y are positively
correlated. This means that as X increases, Y has a tendency to increase, and vice versa. If
Cov(X,Y) < 0 we say that X and Y are negatively correlated, which means that X and Y
have a tendency to move in opposite directions.

Since the covariance can be arbitrarily large, we sometimes prefer to use a standardized mea-
sure of correlation that can only take values between —1 and 1. The definition is based on the
following general fact from linear algebra.

Cauchy-Schwarz Inequality b
For all random variables X,Y : S — R we have
Cov(X,Y) Cov(X,Y) < Cov(X,X) - Cov(Y,Y)
Cov(X,Y)? < Var(X) - Var(Y).
Then taking the square root of both sides gives
|Cov(X,Y)| < /Var(X) -+/Var(Y) = ox - oy.
\ y,
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Proof. For any constant o € R we know that the variance of X — aY is non-negative:
Var(X —aY) = 0.
On the other hand, the bilinearity and symmetry of covariance tell us that
Var(X —aY) = Cov(X —aY, X —aY)
= Cov(X, X) —aCov(X,Y) —aCov(Y, X) + a*Cov(Y,Y)
= Cov(X, X) — 2aCov(X,Y) + a*Cov(Y,Y).
Combining these two facts gives
0 < Cov(X, X) — 2aCov(X,Y) + a?Cov(Y,Y).

Finally, since this inequality is true for all values of a;, we can substitut@

o Cov(X,Y)
- Cov(Y,Y)
to obtain
Cov(X,Y) Cov(X,Y)\?
< Cov(X, X)—2( 2027 X, v)+ (220 Y,Y
0 < Cov(X, X) (COV(Y,Y) ) Cov(X,Y) + (COV(Y, ) Cov(Y,Y)
_ Cov(X,Y)? Cov(X,Y)?
= CovX. X) = 25 v v) * Covr, 1)
B Cov(X,Y)?
= Cov(X, X) — Cov(V.Y)
and hence
Cov(X,Y)
Cov(X,Y)?

Cov(Y. V) < Cov(X, X)

Cov(X,Y)? < Cov(X, X) - Cov(Y,Y).

Alternatively, we can write the Cauchy-Schwarz inequality as
—ox oy < Cov(X,Y) <ox - oy,

which implies that
G Y)
ox - Oy

This quantity has a special name.

28Here we assume that Cov(Y,Y) = Var(Y) # 0. If Var(Y) = 0 then Y is a constant and both sides of the
Cauchy-Schwarz inequality are zero.
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Definition of Correlation

For anyd random variables X,Y : S — R we define the coefficient of correlation:

B Cov(X,Y) _ Cov(X,Y)
Py = v/ Var(X) - y/Var(Y) - ox-oy

From the above remarks, we always have

—-1<pxy <1

What is this good for? Suppose that you want to measure the relationship between two
random numbers associated to an experiment:

XY :S->R
If you perform this experiment many times then you will obtain a sequence of pairs of numbers

('rla y1)7 ($27y2)7 (CU3, y3>7 o

which can be plotted in the x, y-plane:

LZS/ ﬁ‘)d

.
/

X

It turns out that these data points will all fall on a (non-horizontal) line precisely when
pxy = t1. Furthermore, this line has positive slope when pxy = +1 and negative slope when
pxy = —1. To prove one direction of this statement, suppose that X and Y are related by

the linear equation
Y=aX+p

29We assume that X and Y are not constant, so that cx # 0 and oy # 0. If either of X or Y is constant
then we will say that pxy = 0.
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for some constants «a, 5 € R with « # 0. Then we have
Var(Y) = Var(aX + ) = a*Var(X)
and

Cov(X,Y) = Cov(X,aX + j)
= aCov(X, X) + Cov(X, f)
= aCov(X,X)+0

= aVar(X).
It follows from this that
B aVar(X) _a )1 ifa>0,
pxy v/ Var(X) - /a2Var(X) o -1 ifa<0.

If pxy # £1 then our data points will not fall exactly on a line. In this case, we might be
interested in finding a line that is still a good fit for our data. For physical reasons we want
this line to pass through the center of mass, which has coordinates x = px = E[X] and
y = py = E[Y]. Our goal is to find the slope of this line:

M

But now physics is no help because any line through the center of mass is balanced with
respect to the probability mass distribution. To compute the slope we need to come up with
some other definition of “best fit.” Here are the two most popular definitions.
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Least Squares Linear Regression

Consider two random variables X, Y : S — R and consider a line in the X, Y-plane that
passes through the center of mass (ux, py'). Then:

e The line that minimizes the variance the Y-coordinate has slope

oy _ Cov(X,Y) Cov(X,Y)
pxY ox o3 -~ Var(X)

We call this the linear regression of Y onto X.

e The line that minimizes the variance the X-coordinate has slope

ox Cov(X,Y) Cov(X,Y)
pxy oy o2  Var(Y)

We call this the linear regression of X onto Y.

In either case, we observe that the slope of the best fit line is negative/zero/positive
precisely when the correlation pxy is negative/zero/positive.
\. J

In terms of our random sample of data points, the linear regression of Y onto X minimizes
the sum of the squared vertical errors, as in the following picture:

7
P *

Since we know the slope and one point on the line, we can compute the equation of the line
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as follows:

Yy — py oy
slope = = pxy - —
T — pux ox
Oy
y—py = pxy - — (T — px)

ox

oy

y = py +pxy - —(x — px).
gx

Similarly, the linear regression of X onto Y minimizes the sum of the squared horizontal
errors. | won’t prove either of these facts right now. Hopefully the ideas will make more
sense after we discuss the concept of “sampling” in the third section of the course.

In either case, the coefficient of correlation pxy is regarded as a measure of how closely the
data is modeled by its regression line. In fact, we can interpret the number 0 < |pxy| < 1 as
some measure of the “linearity” between X and Y:

|oxy| = how linear is the relationship between X and Y?

The value |pxy| = 1 means that X and Y are completely linearly related and the value
pxy = 0 means that X and Y are not at all linearly related. It is important to note, however,
that the correlation coefficient pxy only detects linear relationships between X and Y. It
could be the case that X and Y have some complicated non-linear relationship while still
having zero correlation. Here is a picture from Wikipedia illustrating the possibilities:

Exercises 4

4.1. I am running a lottery. I will let you flip a fair coin until you get heads. If the first head
shows up on the k-th flip I will pay you r* dollars.

(a) Compute your expected winnings when r = 1.
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(b) Compute your expected winnings when r = 1.5.

(¢) Compute your expected winnings when r = 2. Does this make any sense? How much
would you be willing to pay me to play this game?

[Moral of the Story: The expected value is not always meaningful.|

4.2. T am running a lottery. I will sell 50 million tickets, 5 million of which will be winners.
(a) If you purchase 10 tickets, what is the probability of getting at least one winner?
(b
(c

(d) What is the smallest value of n such that your probability of getting a winner is greater
than 50%7? What is the smallest value of n that gives you a 95% chance of winning?

If you purchase 15 tickets, what is the probability of getting at least one winner?
If you purchase n tickets, what is the probability of getting at least one winner?

)
)
)
)

[Hint: If n is small, then each ticket is approximately a coin flip with P(H) = 1/10. In other
words, for small values of n we have the approximation

45,000, 000 50, 000, 000 n
( )/ (P40 < oy

n

4.3. Flip a fair coin 3 times and let

7

X = “number of heads squared, minus the number of tails.

(a) Write down a table showing the pmf of X.
(b

(c

(d) Draw the line graph of the pmf. Indicate the values of ;1 — o, u, 1t + o in your picture.

Compute the expected value u = E[X].
Compute the variance o = Var(X).

)
)
)
)

4.4. Let X and Y be random variables with supports Sy = {1,2} and Sy = {1,2,3,4}, and
with joint pmf given by the formula

k+t

fxyv(k ) =P(X =kY =1¢) 5

(a) Draw the joint pmf table, showing the marginal probabilities in the margins.

(b) Compute the following probabilities directly from the table:

P(X>Y), P(X<Y), P(Y=2X), P(X+Y>3), P(X+Y<3).
(c) Use the marginal distributions to compute E[X], Var(X) and E[Y], Var(Y).
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(d) Use the table to compute the pmf of XY. Use this to compute E[XY] and Cov(X,Y).

(e) Compute the correlation coefficient:

Are the random variables X, Y independent? Why or why not?

4.5. Let X and Y be random variables with the following joint distribution:

xX\y|-1]o0| 1
~1 0 |0]|1/4
0 [1/2]0]| 0
1 |0 |0]|1/4

(a) Compute the numbers E[X], Var(X) and E[Y], Var(Y).
(b) Compute the expected value E[XY] and the covariance Cov(X,Y).
(c) Are the random variables X, Y independent? Why or why not?

[Moral of the Story: Uncorrelated does not always imply independent.]

4.6. Roll a fair 6-sided die twice. Let X be the number that shows up on the first roll and
let Y be the number that shows up on the second roll. You may assume that X and Y are

independent.
(a) Compute the covariance Cov(X,Y).
(b) Compute the covariance Cov(X, X +Y).
(c) Compute the covariance Cov(X,2X + 3Y).

4.7. Let X; and X5 be independent samples from a distribution with the following pmf:
k ‘ 0o 1 2
Fk) |14 172 174

(a) Draw the joint pmf table of X; and Xj.

(b) Use your table to compute the pmf of X; + Xo.

(c) Compute the variance Var(X; + X2) in two different ways.
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4.8. Each box of a certain brand of cereal comes with a toy inside. If there are n possible
toys and if the toys are distributed randomly, how many boxes do you expect to buy before
you get them all?

(a) Assuming that you already have ¢ of the toys, let X, be the number of boxes you need
to purchase until you get a new toy that you don’t already have. Compute the expected
value E[X,]. [Hint: We can think of each new box purchased as a “coin flip” where
H =“we get a new toy” and T =“we don’t get a new toy.” Thus X, is a geometric
random variable. What is P(H)?]

(b) Let X be the number of boxes you purchase until you get all n toys. Thus we have
X=X+ X1 +Xo+ -+ X,_1.

Use part (a) and linearity to compute the expected value E[X].

(c) Application: Suppose you continue to roll a fair 6-sided die until you see all six sides.
How many rolls do you expect to make?

Review of Key Topics

e Let S be the sample space of an experiment. A random wvariable is any function X :
S — R that assigns to each outcome s € S a real number X (s) € R. The support of X is
the set of possible values Sx € R that X can take. We say that X is a discrete random
variable is the set Sx doesn’t contain any continuous intervals.

e The probability mass function (pmf) of a discrete random variable X : S — R is the
function fx : R — R defined by

P(X = k) ifke Sy,
0 ifk¢Sx.

e We can display a probability mass function using either a table, a line graph, or a
probability histogram. For example, suppose that a random variable X has pmf fx
defined by the following table:

k ‘—1
fX(k)‘ 2

Here is the line graph and the histogram:

[S[M] —
=
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The expected value of a random variable X : S — R with support Sx < R is defined by
either of the following formulas:

E[X]= > k-P(X =k) =) X(s)- P(s).

kESX seS

On the one hand, we interpret this as the center of mass of the pmf. On the other hand,
we interpret this as the long run average value of X if the experiment is performed many
times.

Consider any random variables X,Y : S — R and constants «a, 8 € R. The expected
value satisfies the following algebraic identities:

Ela] = a,
ElaX] = aB[X],
E[X +a] = E[X] + a,
E[X +Y] = E[X] + E[Y],
E[aX + Y] = aE[X] + BE[Y].

In summary, the expected value is a linear function.

Let X : S — R be a random variable with mean y = E[X]. We define the variance as
the expected value of the squared distance between X and u:

Var(X) = E[(X — u)?]
Using the properties above we also have
Var(X) = E[X?] — u? = E[X?] - E[X]*
Since we feel bad about squaring the distance, we define the standard deviation by taking

the square root of the variance:
o =4/ Var(X).
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For random variables X,Y : S — R with E[X] = px and E[Y] = py, we define the
covariance as follows:

Cov(X,Y) = E[(X — pux)(Y = py)]-
Using the above properties we also have

Cov(X,Y) = E[XY] - E[X]- E[Y].
Observe that Cov(X, X) = E[X?] — E[X]? = Var(X).
For any X,Y,Z:S — R and «a, 8 € R we have

Cov(X,Y) = Cov(Y, X),
Cov(aX + BY,Z) = aCov(X, Z) + BCov(Y, Z).

We say that covariance is a symmetric and bilinear function.

Variance by itself satisfies the following algebraic identities:

Var(«)
Var(aX)
Var(X + «)
Var(X +Y)

0,

o*Var(X),

Var(X),

Var(X) + Var(Y) + 2Cov(X,Y).

For discrete random variables X,Y : S — R we define their joint pmf fxy as follows:
fxy(k,{)=P(X =kand Y = /).
We say that X and Y are independent if for all k and ¢ we have
fxy (k,0) = fx(k) - fy () = P(X = k) - P(Y = {).

If X and Y are independent then we must have E[XY]| = E[X] - E[Y], which implies
that Cov(X,Y) =0 and Var(X +Y) = Var(X) + Var(Y). The converse statements are

not true in general.

Let Var(X) = 0% and Var(Y) = o%. If both of these are non-zero then we define the

coefficient of coerrelation:
Cov(X,Y)

ox 0y

PXY =

We always have —1 < pxy < 1.

Let p+g=1withp > 0and g = 0. A Bernoulli random variable has the following pmf:




We compute
E[X]=0-q+1-p=p,
E[X?]=0%q+1%-p=p,
Var(X) = E[X?] - E[X]* = p—p* = p(1 — p) = pg.
e A sum of independent Bernoulli random variables is called a binomial random variable.

For example, suppose that X1, Xo, ..., X,, are independent Bernoullis with P(X; = 1) =
p. Let X = X3 + Xo + -+ + X,,. Then from linearity of expectation we have

E[X]|=E[X1|+E[Xs]+ -+ E[X,]=p+p+- - +p=mnp
and from independence we have
Var(X) = Var(X;) + Var(Xs2) + -+ + Var(X,,) = pg + pg + - - - + pg = npq.

If we think of each X; as the number of heads from a coin flip then X is the total number
of heads in n flips of a coin. Thus X has a binomial pmf:

P(X = k) = (Z) P ",

e Suppose an urn contains r red balls and g green balls. Grab n balls without replacement
and let X be the number of red balls you get. We say that X has a hypergeometric pmf:

() (25)
(r+g) :
Let X; = 1 if the ith ball is red and X; = 0 if the ¢th ball is green. Then X; is a

Bernoulli random variable with P(X; = 1) = r/(r + g), hence E[X;] = r/(r + g), and
from linearity of expectation we have

E[X] = E[X1]+ E[X2] +---+ E[X,] =

P(X =k) =

r r r nr
+ + e+ = .
r+g r+g r+g r+g

Since the X; are not independent, we can’t use this method to compute the Variancem

e Consider a coin with P(H) = p and let X be the number of coin flips until you see H.
We say that X is a geometric random variable with pmf

P(X = k)= P(T)*1. P(H) = ¢ 1p.
By manipulating the geometric serief’]| we can show that
P(X>k)=¢" and PE<X<l)=¢""1-¢"

By manipulating the geometric series a bit more we can show that

In other words, we expect to see the first H on the (1/p)-th flip of the coin?]

30 . . nrg(r+g—n) 5 :
The variance is 79 ta=D but you don’t need to know this.

3f |l < 1 then 1 +q+¢° +--- = 1/(1 — q).
32The variance is ¢/p> but you don’t need to know this.
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3 Introduction to Statistics

3.1 DMotivation: Coin Flipping

Now that we have covered the basic ideas of probability and random variables, we are ready to
discuss some problems of applied statistics. The difficulty of the mathematics in this section
will increase by an order of magnitude. This is not bad news, however, since most of this
difficult mathematics has been distilled into recipes and formulas that the student can apply
without knowing all of the details of the underlying math.

As always, we will begin with our favorite subject of coin flipping. Here is a typical problem
that we might want to solve.

4 )
A Typical Statistics Problem

You want to determine if a certain coin is fair. In order to test this you will flip the coin
200 times. Suppose you do this, and suppose that heads shows up 116 times.

Is the coin fair?

Here is another point of view on the same problem.

Sampling to Estimate a Proportion

In a certain population of voters, suppose that p is the proportion of voters that plan to
vote “yes” on a certain issue. In order to estimate the value of p we will take a random
sample of n voters. Let Y be the number of voters who answer “yes” to our poll. If we
assume that each voter behaves like an independent coin flip with P(“yes”) = p, then Y
is a binomial random variable.

Use this information to estimate the true value of p.

It is worth mentioning up front that these problems are quite difficult, and that responsible
statisticians may disagree on the best way to solve them. In these notes I will present a few
of the standard answers, all of which are perfectly acceptable.

Let’s begin with the first problem. If you flip a fair coin 200 times, how surprising would it
be to get heads 116 times? If such an outcome is quite rare then we will take this as evidence
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that the coin is not fair. More precisely, suppose that P(H) = p is the true probability of
heads@ We are interested in proving or disproving the statement that “p = 1/2.” Ever since
the pioneering work of Ronald Fisher,lﬂ the statement that we want to prove or disprove is
called the null hypothesis Hy. In this case we have

What kind of result would cause us to reject this null hypothesis as false? In order to test the
hypothesis we want to answer the following question:

If the null hypothesis were true, how surprising would it be to get a result “at
least as extreme” as 1167

We will interpret the word “extreme” to mean “far away from the mean.” So let X be the
number of heads obtained in 200 flips of the coin. If the hypothesis Hy is true then the mean
is p = E[X] = 100. Now we want to compute the conditional probability that X is least 16
away from its mean, assuming that Hy is true:

P(|1X —100| > 16 | Hy) = P(X < 84 or X > 116 | Hy).

If this probability is small enough then we will assume that it could not have happened by
chance, and hence the null hypothesis must be false. How small is “small enough”? This is
somewhat arbitrary, but Fisher’s traditional threshold for statistical significance if 5%. If we
perform an experiment and obtain a result that is less than 5% likely to occur (assuming that
Hj is true) then this result will cause us to reject Hy as false.

For the purpose of a hypothesis test there is always a critical value, which is the least extreme
outcome at the desired level of significance. In our case critical value is the smallest integer k
such that

P(]X —100| > k| Hp) < 5%.

Without explaining the details, let me just tell you that k& = 15 is the solution. Indeed, my
computer tells me that

P(|X —100| > 13| Hp) = 7.7%,
P(]X = 100| > 14| Hy) = 5.6%,
P(|X — 100 > 15| Hy) = 4.0%,
P(]X —100| > 16| Hy) = 2.8%,
P(|X — 100 > 17| Hp) = 1.9%,

33Right now we assume that p is a fixed, but unknown, constant. This means we are doing “frequentist”
statistics. Later on we might treat p as a random variable. Then we will be doing “Bayesian” statistics. The
difference is subtle, so don’t worry about it right now.

34Ronald Fisher (1890-1962) was a British statistician and geneticist who pioneered many of the standard
techniques in the subject.
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etc.

Observe that our outcomes X = 116 is more than k = 15 away from the hypothetical mean
100. (In fact, there is only a 2.8% chance of seeing an outcome so extreme.) Therefore we
reject the null hypothesis. In other words:

No, the coin is not fair.

The concept of “alternative hypotheses” was pioneered by Jerzy Neyman (1894-1981) and
Egon Pearson (1895-1980). Egon was the son of Karl Pearson (1857-1936), who was one of
Ronald Fisher’s fiercest professional rivals. Nevertheless, Egon and Fisher seemed to get along
fine.

1
Hl — élp > 5'77

In order to distinguish between Hy and H; we will use conditional probability. Assuming that
Hj is true, we will look for an outcome in the direction of H; that is rare. How rare? Fisher’s
traditional threshhold for statistical significance is 5%. If we obtain a result that is less than
5% likely to occur, assuming that Hy is true, this result will cause us to reject Hy as false.

Let me summarize the method.

é )
Hypothesis Testing for a Proportion

Consider a coin where the probability of heads P(H) = p is unknown. Let py be our
guess for the true value of p. In order to test the null hypothesis

Ho = *“p=po,”
at the « level of significance ] against the alternative hypothesid®)
Hl = “p 7 p()a”

we will flip the coin n times and let X be the number of heads that show up. Suppose
we have performed a computation to determine the minimum integer k, /s, such that

P(X <npo—kap or npo+kaep<X|p=py) <.

Now we perform the experiment and measure X. If we obtain an outcome such that
| X — npo| = ko2 then we will reject the null hypothesis. Otherwise, we will fail to
reject the null hypothesisP|

We might also be interested in testing Hy against a one-sided alternative, such as

Hy =*%p>poy”
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In this case we will compute the largest integer k, such that
P(X = kalp=po) <a

and then we will reject Hy if the experiment returns X > k,.

The only thing still missing is a method for computing the critical numbers k,; and kq. It
turns out that this problem is impossible to solve by hand. Right now your only option is to
use a computer. Later I’ll show you some tricks that will simplify the problem to the point
that you can look up the answer in a tablef)r_g]

Now let’s consider the second problem. Suppose that you poll 200 random voters and ask
them whether they plan to vote “yes” on a certain issue. Let p be the true proportion of “yes”
voters in the entire population and let Y be the number of voters to responded “yes” to the
poll. We will use the number Y /200 as an estimator for the unknown p and we will write

y
200 7
to emphasize this factF;g] For example, suppose that we perform the poll and that ¥ = 116
respond “yes.” Then our estimate for p is
Y 116
pr — = — = 58%.
200 200
But how accurate is this estimate? Our job as a statistician is not finished until we can provide
a quantitative measure of the uncertainty in our estimate. Again, it is common to use the
a = 5% level of significance. In this case our goal is to find the number e such that

116 116
— —e<p< — = 95%.
<200 CSPSop e) %
Actually, this equation is incorrect because e and p are both constant, so the probability of
finding p in the interval 58% + e is either 0 or 1. Instead we want to solve the equation

35Typically we will use o = 5%.

36The concept of “alternative hypotheses” was pioneered by Jerzy Neyman (1894-1981) and Egon Pearson
(1895-1980). Egon was the son of Karl Pearson (1857-1936), who was one of Ronald Fisher’s fiercest professional
rivals. Nevertheless, Egon and Fisher seemed to get along fine.

3TThere is no such thing as “accepting” or “proving” the null hypothesis. The best we can do in that case is
to design a more sensitive experiment and try again.

38 Commonly called a table of Z-scores.

3%In general, if 6 is an unknown constant then we will write 6 for a random variable that we are using to
estimate 6.
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In other words, we are looking for a number e such that if we perform the same poll many times,
then the constant number p will fall inside the random interval Y /200 + e approximately
95% of the time.

Without explaining the details right now, let me just tell you that e = 6.8% is a reasonable
answer. Even though the number p is not random, let me abuse notation a bit and write

P(58% — 6.8% < p < 58% + 6.8%) = P(51.2% < p < 64.8%) ~ 95%.
More correctly, we will say that
58% + 6.8% is a 95% confidence interval for p.

If we think of each voter as a coin with “heads”=%“yes,” then we note that p = 50% is
outside of this confidence interval. Note that this is consistent with the hypothesis test that
we performed above. The two concepts (of hypothesis testing and confidence intervals) are
closely related.

Here is the general method.

( )

Confidence Intervals for a Proportion

Suppose that p is the true proportion of “yes” voters in a certain population. In order
to estimate p we perform a random sample of n voters and let Y be the number who
respond “yes.” Then we use the random variable

p=Y/n

as an estimator for the unknown constant p. In order to find a (1 — «) - 100% confidence
interval for p we will perform a computation to find the number e/, such that

Pp— oo <P <P+ eap2) = (1— ) - 100%.

Then we will report that
p=pteys  with confidence (1 — ) -100% confidence.

We might be interested in one-sided confidence intervals. For example, suppose we have
a number e, such that
Plp<p+es) =(1-—a) 100%.

Then we will report that
p<p+e, with (1 —a)-100% confidence.
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That’s pretty much all there is to the statistics of coin flipping. The hard part is to use our
knowledge of probability theory to actually compute the critical numbers k, and the error
bounds e,. It turns out these problems, among many others, are controlled by a miraculous
family of continuous random variables called

normal distributions.
This will be our main topic for the rest of the course.

To motivate the idea, let’s take a look at the probability histogram for a binomial random
variable with parameters n = 200 and p = 1/2:

T
0 100 116 200

Observe that the bars of the histogram seem to follow a smooth curve. Let’s assume that this
curve is the graph of some continuous function g : R — R. Without explaining the details
right now, let me just tell you that this function has the following (surprising) formula:

1 ) e—(x—100)2/100'

g(x)=:10V@;

When performing the hypothesis test above, I used my computer to find the exact probability
of getting at most 100 — 16 heads or at least 100 + 16 heads in 200 flips of a fair coin:

84 200
P(X <8ior X >116)= ) P(X =k)+ Y, P(X =k)
k=0 k=116

& <200

k)/fm=28m%.
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However, if I didn’t have a computer this computation would have been impossible. In that
case I might try to approximate the area of the rectagles as twice the area under the graph
of g(x) from z = 0 to x = 84. This is still a difficult computation but we will see that
mathematicians in the 1700s could this by hand. Later I will also show you how to look up
the answer in a table. For now let me just tell you that

84 84 1

P(]X —100| = 16) ~ 2- f -~ (@=1002/100 g0 9 365%.

0

g(z)dr =2- f —

o 104/
This approximation might be good enough for some purposes, but we get a much better
approximation by integrating from 0 — 0.5 to 84 + 0.5:

84+0.5
2. J g(x) = 2.838%.
0-0.5

Why does tweaking the endpoints in this way give a better answer? This is easier to see with
a smaller example, so let Y be a binomial random variable with n = 7 and p = 2/3. Here is
the probability histogram of Y with a smooth normal curve superimposed:

— \

o 1 2 3 4 5 6 1

Let me just tell you that this curve is the graph of the function

h(y) = —o . ¢=9w=14/3)%/28

V28T

Now suppose that we want to compute the probability P(3 <Y < 5). On the one hand, we
can just add the areas of the three rectangles:

PB<Y <5) =P =3)+P(Y

()6 G)

O 0 () () -
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On the other hand, we can approximate these these rectangles with a certain region under
the graph of h(y). For best results we will take the region between y = 2.5 (which is the left
endpoint of the “3-rectangle”) and y = 5.5 (which is the right endpoint of the “5-rectangle):

2.% 5.6

My computer tells me that

5.5
69.1% = PB3<Y <5) ~ J g(y) dy = 70.7%.
2.5

You are probably wondering where the mysterious functions g(z) and h(y) came from. We’ll
get there soon, but first I have to define the concept of “continuous random variables.”

3.2 Definition of Continuous Random Variables

On the first exercise set I asked you to select a random number X from the real interval
[0,1]] ={zeR:0<z <1}

We want to do this in some way so that all of the numbers are “equally likely.” Computers
have routines to choose random numbers, but they will always round the answer to some
number of decimal places, which means that infinitely many numbers in the interval will be
impossible to get.

Unfortunately, no digital computer will ever be able to create a truly continuous distribution.
Instead, let’s imagine an analog situation such as throwing a billiard ball onto a billiard table.
After the ball settles down let X be the distance from the ball to one of the walls of the table:
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Let’s assume that the maximum value of X is 1 unit. Then X is a random variable with
support Sx = [0,1]. Now here’s an interesting question:

P(X=1/2)=0 or  P(X=1/2)#0?

If we were simulating X on a computer, say to 5 decimal places, then the probability of getting
X = 0.50000 would be small but nonzero. With the billiard ball, however, P(X = 1/2) is
the probability that the ball lands exactly in the center of the table. If all values of X are
equally likely then this probability must be zero.

Indeed, suppose that every value of X has the same probability €. Then since there are
infinitely many points on the table we must have

1=P(0,1])) =e+ec+e+---.

If € > 0 then the infinite sum € + € + ¢ + - - - is certainly larger than 1, so our only option is
to take ¢ = 0. In other words, we have

P(X = k) =0 for all values of k.

This is sad because is means that X does not have a probability mass function. So how can
we compute anything about the random variable X7

We need a new trick, so we return to our basic analogy
probability ~ mass.
When dealing with discrete random variables we used the idea that
mass = X point masses.

But now we don’t have any point masses because our “probability mass” is smeared out over
a continuous interval. In this case we will think in terms of the physical concept of density:

mass = § density.

(Deﬁnition of Continuous Random Variable ]

A continuous random variable X is defined by some real-valued function

fx:R—>R
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called the probability density function (pdf) of X. The support of X is the set Sy € R
on which fx takes non-zero values. The density function must satisfy two properties:

e Density is non-negative:

fx(x)=0 for all z € R.

e The total mass is 1:

fiﬁﬂ@dx:L

The probability that X falls in any interval [k, ] < R is defined by integrating the density
from x = k to x = £:

{
Pk<X</{)= f fx(z) dz,
k
and it follows from this that the probability of any single value is zero:
k
paeﬂg:mk<X<m:J ﬁmmx:o
k

In other words, a continuous random variable does not have a probability mass function.
\ J

The fact that P(X = k) = 0 for all ¥ means that we don’t have to care about the endpoints:

Pk<X<l)=P(X=k)+Plk<X<l)+P(X=10
—0+Pk<X<0)+0
= Pk<X <)

This is very different from the case of discrete random variables, so be careful.

Now we have the technology to define a random number X € [0, 1] more precisely. Instead
of saying that all numbers are equally likely, we will say that X has constant (or “uniform”)
density. That is, we let X be defined by the following density function:

1 ifo<z<1,

0 otherwise.

fx(x) = {

Here is a graph of the pdf. Note that the total area is 1.
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ol acea 1

From this we can also compute the probability that X falls in any interval. Suppose that

0< k</?¢<1. Then we have

4 l
P(kéXSE):J fX(:c)dxzf Ldr=al' =0~ k.
k k

We can also see this from the picture because the
width ¢ — k and height 1:

corresponding region is just a rectangle of

1 1

aovrton Q‘.'" k
_—

N

Ok L 1

In other words, the probability that a random number X € [0, 1] falls in an interval [k, ¢] <
[0,1] is just the length of the interval: ¢ — k. That agrees with my intuition.

Here is the general story.
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Uniform Random Variables

Consider any interval [a,b] < R. The uniform random variable X € [a,b] is defined by
the density function

1/(b—a) ifa<z<b,
x =
Jx(@) {0 otherwise.

Observe that the region under the graph of fx is a rectangle of width b — a and height
1/(b — a), hence the total area is 1:

y h—} q\ art.a /l
pa—— 4L s
Ve /,//
v
o )
. J

Let’s try to compute the expected value and standard deviation of the uniform random vari-
able. It turns out that the algebraic theory of continuous random variables is exactly the same
as for discrete random variables. All we have to do is define the moments. If X is a discrete
recall that the expected value is the center of the point mass distribution:

E[X] =) k-P(X = k).
k

The equation for center of mass of a continuous distribution is “exactly the same,” except
that we replace the pmf fx (k) = P(X = k) by the pdf fx(z) and we replace the summation
by an integral:

E[X] = j;v - fx(z) dz.

(Moments of Continuous Random Variables ]
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Let X be a continuous random variable with pdf fx(x). We define the rth moment by
0
E[X"] = f " fx(z)dx

—0Q0

If Y is another continuous random variable then we define the mized moments by
EX"Y”] f f Y7 fx(z,y) dz dy,
where fxy : R? — R is called the joint pdf of X and Y. We won’t pursue joint pdf’s in

this class because I don’t assume a knowledge of multivariable calculus.
\ J

Having defined the moments, the variance and covariance are exactly the same as before:
Var(X) = E[X?] — E[X]? and  Cov(X,Y) = E[XY] - E[X]- E[Y].

Let us practice the definitions by computing the mean and standard deviation of the uniform
random variable X € [a, b]. The mean is defined by

u=FE[X]= JOO x- fx(x)dx

o

.b—a
b2 a?

" 2-(b—a) 2-(b—a)
b —a®  (b+a)b—a) a+b

2-(b—a)  2-(b—ay 2

In fact, we could have guessed this answer because the center of mass is just the midpoint
between a and b:
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The standard deviation is harder to guess, and harder to compute@ First we compute the
second moment:

E[X?] = f D2 fx(e)da

0¢]
b
1
2
- . d
fac g 4
3 1 b
b—al,
b a’
T3 (b—a) 3-(b—a)
b’ —a® (a®+ab+ ) (b—a] a®+ ab+ b

3-(b—a) 3 (b—af 3

Next we compute the variance:
Var(X) = E[X?] — E[X]?]
a® +ab+ b (a+b>2

a
T
3

3 2
a?+ab+0>  a®+2ab+ b2
- 3 R 4
4(a® + ab+b?)  3(a® + 2ab + b?)
- 12 B 12
a?—2ab+b*  (a—0b)?
B 12 12
Finally, since a < b, the standard deviation is
(a—=b)?2 b—a
- 5~ o 29 (b-a),

0T will use the formula b* — a® = (b — a)(a® + ab + b?) for a difference of cubes.
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In other words, the standard deviation is about 0.289 times the length of the interval. We can
use this to compute the probability P(u — o < X < p + o) that X falls within one standard
deviation of its mean. Instead of using an integral, we observe that this area is a rectangle:

A pod pp preé S"u}-?,d/q

e ya
—on T e
SINSN S

o k/zdw b

Since the height is 1/(b — a) and the width is 20 we have

P(p—o0 <X < p+o0)=(base) x (height)

1
=20 b—a

_ 2'%@7'@= \/213 — 57.7%.

It is interesting that the same result holds for all uniform distributions, regardless of the
values of a and b. I want to warn you, though, that this result only applies to uniform
random variables. Below we will see that normal random variables satisfy

Plp—o<X <p+o0)=0683%.

3.3 Definition of Normal Random Variables

Now it is time to discuss the most important family of continuous random variables. These
were first discovered around 1730 by a French mathematician living in London@ called Abra-
ham de Moivre (1667-1754).

rDe Moivre’s Problem 1

| Let X be the number of heads obtained when a fair coin is flipped 3600 times. What is |

“1He lived in England to avoid religious persecution in France.
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Lthe probability that X falls between 1770 and 18307 J

Since X is a binomial random variable with X = 3600 and p = 1/2 we know{zﬂ that

1830

> P(X =k

k=1770

1%0 (3600) <1>k <1>3600—k
k=1770 k 2 2

1830
3 (3500Y )y
. .

k=1770

P(1770 < X < 1830)

However, this summation is completely impossible to solve by hand. Indeed, the denominator
23600 has almost 2500 decimal digits:

logyg (2°°%7) = 2494.5.

Computing this probability in 1730 was a formidable problem. Nevertheless, de Moivre was
able to apply the relatively new techniques of Calculus to find an approximate answer. If he
hadn’t made a slight mistakeFE] he would have arrived at the following solution:

1830 3600
P(1770 < X <1830) = ). < L ) /23500 ~ 69.06880%.
k=1770

My computer tells me that the exact answer is 69.06883%, so de Moivre’s solution is accurate
to four decimal places. Amazing! How did he do it?

There are two steps in the solution. To make the analysis easier, de Moivre first assumed that
the fair coin is flipped an even number of times, say n = 2m. Then he performed some clever
tricksFE] with the Taylor series expansion of the logarithm to prove the following.

( )

De Moivre’s Approximation

If the ratio £/m is small then we have

(21 )]

42Gince X is discrete, the endpoints do matter.
43He forgot to apply the continuity correction.
“48ee the Wikipedia page for details: <https://en.wikipedia.org/wiki/De_Moivre-Laplace_theorem>
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and hence

2m 2m\ e,
(ere) () =

Now let X be the number of heads obtained when a fair coin is flipped 2m times. It
follows from the above approximation that

()] [(2) e

P(X=m+0)~e /™. P(X =m).

In other words, the probability of getting m + £ heads is approximately e*/m times the
probability of getting m heads.
. J

This is excellent progress, because the formula on the right is defined for all real numbers
f € R, whereas the formula on the left is only defined when £ is a whole number. The next
step is to find an approximation for P(X = m) that is defined for any real number m € R. By
using tricks with logarithms, de Moivre was able to show that

P(X =m) = (27:) P —

Jem

where c is some constant. By computing ¢ to a few decimal places he noticed that ¢ ~ 3.14.
Therefore he conjectured that c is exactly equal to m, but he was unable to prove this. At this
point his friend James Stirling stepped in to complete the proofﬁ]

as m — o0,

Stirling’s Approximation

Let X be the number of heads obtained when a fair coin is flipped 2m times. If m is large
then the probability of getting m heads (and m tails) is approximately 1/4/7m. That is,

we have P(X = m) <2n7:,:> Jo2m _ (2;”) /4™ ~ \/717”

Finally, by combining de Moivre’s and Stirling’s approximations, we obtain an approximate
formula for the probability P(X = m + ) that makes sense for any real values of m and ¢:

1 2
P(X:m—l—f)%e*zz/m-P(X:m)% cemtm,
VTm

45 This proof is much less straightforward and requires a trick, so I won’t even mention it.
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And this is the formula that de Moivre used to solve his problem. Recall that the number of
coin flips is 2m = n = 3600, and hence m = 1800. If £/1800 is small then the probability of
getting 1800 + ¢ heads in 3600 flips of a fair coin has the following approximation:

1 >
P(X = 1800 4 {) ~v —— - ¢~ *7/1800,
V18007

Since 30/1800 is rather small, de Moivre obtained a rather good estimate for the probability
P(1770 < X < 1830) by integrating this function from —30 to +30:

30
P(1770 < X < 1830) = Y P(X = 1800 +0)
£=-30

30

1

~ f . T/1800 0 68.2688%.
—-30 18007

It might seem to you that this integral is just as difficult as the sum involving binomial
coefficients. Indeed, this integral is difficult in the sense that the solution cannot be written
down exactlyﬁ] However, it is not difficult to compute an approximate answer by hand.
De Moivre did this by integrating the first few terms of the Taylor series. This is already
quite impressive but his solution would have been more accurate if he had used a continuity
correction and integrated from —30.5 to 30.5. Then he would have obtained

30 30.5 1

> P(X = 1800 + ¢) %f

e e~ /1800 g0 — 69.06880%,
0=—30 —30.5 T

which is accurate to four decimal places.

Many years later (around 1810) Pierre-Simon Laplace brought de Moivre’s work to maturity
by extending this to the case when the coin is not fair.

The de Moivre-Laplace Theorem

Let X be a binomial random variable with parameters n and p. If the ratio k/np is small
and if the numbers np and nq are both large then we have the following approximation:

n - 1 - —n n
P(X = ]{:) = <k>p]€q7’b K x 7,271_ qu - € (k p>2/(2 pq).

To clean this up a bit we will write

W=mnp and 0% = npq

46111 bet your calculus instructor never told you about the antiderivative of e~**/2. That’s because the

antiderivative cannot be expressed in terms of functions that you know. It’s an entirely new kind of function
called the “error function.”
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for the mean and variance of X. Then the approximation becomes

P(X =k)~ 1 o~ (k—p)/20%

A 2mo?

You might feel rather overwhelmed at this point, but I promise you that the hard work is
done. All that remains is to explore the consequences of this theorem. We begin by giving a
special name to the strange function in the de Moivre-Laplace Theorem.

( )

Normal Random Variables

Let X be a continuous random variable. We say that X has a normal distribution with
parameters p and o2 if its pdf has the formula

L @w?20?

V2o

You might also see this in the equivalent form

n(z) =

1

027r‘

n(x) = 2 (5

We will use the shorthand X ~ N (u,0?) to indicate that X has this pdf.
\_ J

Recall that a probability density function must satisfy two conditions:

Q0
n(x) =0 for all z e R and f n(x)dr = 1.
—Q0
The first condition is true because the exponential function is always positive. The second
condition is closely related to Stirling’s approximation. It is equivalent to the statement that

0 2
f e = .
—00

You might see a proof of this when you take vector calculus but right now we’ll just take it
for granted. It turns out that the “parameters” u and o2 are actually the mean and variance
of continuous random variable["| In other words, we have

E[X]zjOo z-n(z)de=p

—00

4TThey’d better be. Otherwise this is a terrible notation.
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and
0

Var(X) = f (x — p)? - n(zx)dz = o

—00

This can be proved using integration by parts, but it’s not fun so we won’t bother.

The only calculation I want to do is to compute the first and second derivatives of n(x) so we
can sketch the graph. If f : R — R is any differentiable function and if ¢ € R is any constant
then the chain rule tells us that

d
L oeef@ @) g
1 Ce c-e fi(x).

Applying this idea to the function n(x) gives

d —(z —p)

—2(x —p) 1
dr 202 '

W) = () () 2 @) (- ).
20 o

Since n(x) > 0 for all z we see that n/(x) = 0 if and only if (z — p) = 0, hence the graph

has a local maximum or minimum when x = u. Next we use the product rule to compute the

second derivative:

" (z) = _é.% n(x) - (z— p)
:_%¢m@+www—m]
- [n(x) _ ;Q.n@)(x—u)(a:—u)}
:_;.n(x)-[l—(x;;‘y]-

Again, since n(z) is never zero we find that n”(x) = 0 precisely when

(z — p)?
R
(e =m* _ |
o2
(x—p)? =0’
r—pu==x0
rT=pxo.

Hence the graph has two inflection points at x = p + 0’.@ Furthermore, since —n(x)/o? is
always strictly negative we see that the graph is concave down between p + ¢ and concave up
outside this interval. In summary, here is a sketch of the graph:

48In fact, this is the reason why de Moivre invented the standard deviation.
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From this picture we observe that the inflection points are about 60% as high at the maximum
value. This will always be true, independent of the values of u and o. To see this, first note
that the height of the maximum is

L o~ (u—m)?/20% _ ! 0 !

n(p) = = e ,
(1) \V2mo? \2mo? \2mo?

which depends on the value of o. Next observe that the height of the inflection points is

1
n(pto) = 53 . e~ (uEo—p)?/20?
1
— . e~ (£0)?/20°
2mo?
— 1 . 6_02/202 — ; . 6_1/2

V2o \V2mo?

which also depends on o. However, the ratio of the heights is constant:

n(pto) e~ '2)»/275 12 =
() = 1/%7 = = 0.6065.

Knowing this fact will help you when you try to draw normal curves by hand.
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3.4 Working with Normal Random Variables

We have seen the definition of normal random variables, but we have not seen how to work
with them. If X ~ N(p,0?) is normal with parameters ;1 and o then the goal is to be able
to compute integrals of the form

Pla< X e (@207 o

b1
<= o

There are three options.
Option 1. Use a computer. This is how professional statisticians do it.

Option 2. Use calculus to compute an approximate answer by hand. This is what de Moive
and Laplace did because they had no other choice. T’ll just sketch the idea. For example,
suppose that we want to compute the following integral:

b 2
f e dx.
a

@ as a Taylor series near x = 0. Without explaining the details,

To do this we first expand e~
I’ll just tell you that

1 1 1
-2 _ 4,2, + a4 Lt e, L 8
e =1—x +2!1‘ 3!:E +4!ac

Then we can integrate the Taylor series term by term:

b b 4 6 8
—a? g L2
Le dmL(l x+2! 3!—1-4! >dm

(W —a®) (°—a’) (T—a)) ("—d”)
3 5.2 7.3l 9.4l

This series converges rather quickly so it doesn’t take many terms to get an accurate answer.

Option 3. “Standardize” the random variable and then look up the answer in a table.

I'll show you how to do this now. Suppose that X is any random variable (not necessarily
normal) with E[X] = p and Var(X) = 2. Assuming that X is not constant, so that o # 0,
we will consider the random variable

>

|

=
—_
Q=

On a previous exercise set you showed that

EﬂszFX—”}:lmm_:

g g

=
9=
9=



and

1
= —QVar(X) =— = 1.
o o

1
Var(Y) = Var (X - M)
o o
Thus we have converted a general random variable X into a random variable Y with E[Y] =0
and Var(Y) = 1, called the standardization of X.

In the special case that X ~ N(u,0?) is normal we will use the letter Z to denote the

standardization: x
7 - a
o

You will prove on the next exercise set that this random variable Z is also normal.

( )

Standardization of a Normal Random Variable

Let X ~ N(u,0?) be a normal random variable with mean p and variance o2. Then

_X—p

g

VA

is a normal random variable with mean 0 and variance 1. In other words, we have

—p
g

X ~ N(p,0?) ~ N(0,1).

By tradition we use the letter Z ~ N(0, 1) to denote a standard normal random variable.
\ y,

This result means that any computation involving a normal random variable can be turned
into a computation with a standard normal random variable. Here’s how we will apply the
idea. Suppose that X ~ N(u,0?) and let Z = (X — u)/o be the standardization. Then for
any real numbers a < b we have

Pla<X<b)=Pla—p<X—p<b—p)

:P<a—b<X—/J,<b—/J,)

o o o

=P<a_“<z<b_“’>

o (o2

- f T L e gy,
(a—p)jo V2T

We have reduced the problem of computing areas under any normal curve to the problem of
computing areas under a standard normal curve. Luckily this problem has been solved for
us and the answers have been recorded in a table of Z-scores.
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Here’s how to read the table. Let n(z) be the pdf of a standard normal random variable:
; . eix2/2'
V2mo?

In order to integrate this function we need an anti-derivative. Sadly, it is impossible to write
down this anti-derivative in terms of familiar functions, so we must give a new name. We will

n(r) =

call it @El Geometrically, we can think of ®(z) as the area under n(z) from x = —o0 to z = z:
z 1
B(z) = P(Z < 2) = f L gy
_oo V2T

Here is a picture:

Then according to the Fundamental Theorem of Calculus, for all z; < 29 we have

P(Zl < Z < Z2) = @(22) — (I)(Zl)
‘13(21) + P(Zl <Z< 2’2) = @(22).

This is easy to see by looking at the picture:

+

The symmetry of the normal distribution also tells us something about the anti-derivative ®.
To see this, let z > 0 be any non-negative number. Then

O(—2)=P(Z < —2)

49This is also sometimes called the “error function” because it is used to model errors in scientific measure-
ments.
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is the area of the infinite tail to the left of —z and
P(Z=22)=1-P(Z<z)=1-2(2)

is the area of the infinite tail to the right of z. Because of symmetry these tails have equal
area:

Therefore we conclude that

O(—z)
O(2) + ®(—=2)

1—®(z)
1

for all values of z € R. This is useful because many tables of Z-scores only show ®(z) for
non-negative values of z.

Time for an example.

Basic Example. Suppose that X is normally distributed with mean y = 6 and variance
o2 = 25, hence standard deviation o = 5. Use a table of Z-scores to compute the probability
that X falls within one standard deviation of its mean:

P(X —pu <o) = P(IX — 6| <5)=?

Solution. Note that we can rewrite the problem as follows:
P(]X -6/ <5)=P(-5<(X—-6)<b)=P1l<X <11).
Now we use the fact that Z = (X — u)/o = (X — 6)/5 is standard normal to compute

Pl<X<11)=P(1-6<X—-6<11-6)

1-6 X-6 11-6
= < <
) ) )




Finally, we look up the answer in our table:

Pl<X<1l)=P(-1<Z<1)
(1) = &(-1)

(1) = [1 - &(1)]
-®(1) -1

= 2(0.8413) — 1

= 0.6826

= 68.26%.

I

P
P
2

In summary, there is a 68.26% chance that X falls within one standard deviation of its mean.
In fact, this is true for any normal random variable. Indeed, suppose that X ~ N(u,0?).
Then we have

— i
ag

P(X—pul<o)=P (—1 P S 1> = ®(1) — (—1) = 68.26%.

On the next exercise set you will verify for normal variables that
P(|X — u| < 20) = 95.44% and P(|X — u| < 30) = 99.74%.

Since normal distributions are so commonﬂ it is useful to memorize the numbers 68%, 95%
and 99.7% as the approximate probabilities that a normal random variable falls within 1, 2 or
3 standard deviations of its mean.

To end the section, here is a more applied example.

Example of de Moivre-Laplace. Suppose that a fair coin is flipped 200 times. Use the
de Moivre-Laplace Theorem to estimate the probability of getting between 98 and 103 heads,
inclusive.

Solution. Let X be the number of heads obtained. We know that X is a binomial random
variable with parameters n = 200 and p = 1/2. Hence the mean and variance are

pw=mnp =100 and o = npq = 50.

The de Moivre-Laplace Theorem tells us that X is approximately normal, from which it follows
that (X —p)/o = (X —100)/4/50 is approximately standard normal. Let Z ~ N(0,1) be a
standard normal distribution. Then we have

98 —100 _ X —100 _ 103 — 100
P(98<X<103)=P< >

< <
V50 V50 V50

50That’s why we call them “normal.”
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/50
0.28 < Z < 0.42)

(-

(0.42) — ®(—0.28)
(0.42) — [1 — @(0. 28)]
(0.42) + ®(0.28) —
6628 +0.6103 — 1
7.3%.

X -1
= <—0.28 < X 100 < 0.42)

1%

I I
P@**@**@*"U

Il
o O

Unfortunately, this is not a very good approximation. (My computer tells me that the exact
answer is 32.78%.) To increase the accuracy, let us do the computation again with a continuity
correction. Recall that X is a discrete random variable with mean u = 100 and standard
deviation o = /50 = 7.07. Now let X’ ~ N(100,50) be a normal random variable with the
same parameters. The de Moivre-Laplace Theorem tells us that X ~ X’. Since X is discrete
and X’ is continuous we should tweak the endpoints as follows:

P(98 < X <103) ~ P(97.5 < X' < 103.5).
Now we complete look up the answer in our table:

P(98 < X < 103) ~ P(97.5 < X' < 103.5)
<97.5 —100 _X'—100 _103.5— 100)
=P < <
/50 /50 /50

X' -1
<—0.35 < 700 < 0.49)
V50

(—0.35 < Z < 0.49)
(0.49) — ®(—0.35)
(0.49) — [1 — (0.35)]
(0.49) + ®(0.35) — 1
6879 + 0.6368 — 1
2.5%.

| I
*@**@**@"‘U"U

% O

That’s much better.

3.5 The Central Limit Theorem

Let me recall how we computed the mean and variance of a binomial random variable. If a
coin is flipped many times then we consider the following sequence of random variables:

i =

1 if the ith flip shows H,
0 if the dth flip shows T
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Since the coin doesn’t change, we will assume that each flip has the same probability p of
showing heads. Then for each i we compute that

E[Xi]=p and Var(X;) = pq.

In this situation we say that the sequence X, Xs, X3,... of random variables is identically
distributed. To be specific, each X; has a Bernoulli distribution with parameter p. Now
suppose that the coin is flipped n times and and let X be the total number of heads:

X=X1+Xo+ -+ X,.
Then we can use the linearity of expectation to compute the expected number of heads:
E[X]=E[X1+Xo+ -+ X,
= E[X1] + E[X32] + - -- + E[X,)]
=p+p+-+p=np.
|
n times

From the beginning of the course we have also assumed that a coin has “no memory.” Tech-
nically this means that the sequence of X1, X9, X3, ... of random variables are mutually in-
dependent. With this additional assumption we can also compute the variance in the number
of heads in n coin flips:

Var(X) = Var(X; + Xo + - + Xp)
= Var(X;) + Var(X2) + - - - + Var(X,,)
=pq+pq+---+pg=mnpq.

n times

Now let me introduce a new idea. Suppose that we are performing the sequence of coin flips
because want to estimate the unknown value of p. In this case we might also compute the
average of our n observed values. We will call this the sample average of the sample mean:

1 1
X=—X1+Xo+ - +X,)=—-X.
n n

It is easy to compute the expected value and variance of X. We have

E[X]:E[I-X]z.E[X]:"p:p

n

and . .
~ npq  pq
Var(X):Var (nX> :ﬁvar(X):F:;

Each of these formulas has an interesting interpretation:

e The formula E[X] = p tells us that, on average, the sample average will give us the true
value of p. In the jargon, we say that the random variable X is an unbiased estimator
for the unknown parameter p.
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e The formula Var(X) = pg/n tells us that our guess for p will be more and more accuarate,
the more times we flip the coin. Indeed, we have

Var(Y)zzﬂﬁO as n — 0.
n

This statement goes by a fancy nameF_T] The Law of Large Numbers. It is basically a
guarantee that statistics works, at least in theory.

We have proved all of this for coin flipping, but it turns out that the same results hold for any
experiment, as long as the following assumptions are satisfied.

(" )
The Idea of a Random (iid) Sample

Suppose we want measure some property of a physical system. For this purpose we will
take a sequence of measurements, called a random sample:

X1, X2, X3, . . ..

Since the outcomes are unknown in advance, we treat each measurement X; as a random
variable. Under ideal conditions we will make two assumptions:

e We assume that the X; are mutually independent. That is, we assume that the
underlying system is constant, and we assume that the result of one measurement
does not affect the result of any other measurement.

e We assume that the measurements X; are identically distributed with E[X;] = u
and Var(X;) = 02. The mean p represents the unknown quantity we are trying to

measure and the variance o2 represents the amount of error in our measurements.

When these assumptions hold we say that X, X9, X3,... is an #d sample.
L J

A random sample in the physical sciences is much more likely to be iid than a random sample
in the social sciences. Nevertheless, it is usually a good starting point.

The following two theorems are the main reasons that we care about iid samples.

(The Law of Large Numbers (LLN) ]

| Suppose that Xi, Xo,..., X, is an iid sample with mean E[X;] = p and variance

51Mention Bernoulli.
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Var(X;) = 2. In order to esimate y we compute the sample mean:

X

1
E-(X1+X2+"'+Xn).

How accurate is X as an estimate for p?

Since the X; are identically distributed we have

— 1
BIX] = — (B[] + -+ E[X,])
1 1
=—(ptpt+-tp)=—-np=p
n n
and since the X; are independent we have
— 1
Var(X) = 3 (Var(Xy) + -+ + Var(X,,))
1 1 2
:E~(02+02+---+02)zﬁ-nazz%.

The equation E[X] = u says that X is an unbiased estimator for p. In other words, it
gives us the correct answer on average. The equation Var(X) = 02/n tells us that

J2

Var(X) = — — 0 as n— .
n

In other words:

more observations = more accurate estimate.

\. J

The LLN was first proved in the case of coin flipping by Jacob Bernoulli in his book Ars
Conjectandi (17 13)@ The general version stated here was developed mostly by Russian
mathematicians in the 1920s.

The LLN says that the error in the sample mean will eventually go to zero if we take enough
observations. However, for practical purposes we would like to be able to compute the error
precisely. This is what the de Moivre-Laplace Theorem does in the special case of coin flipping.

Suppose that Xi,..., X, is a sequence of iid Bernoulli random variables with E[X;] = p
and Var(X;) = pg. Then the sum X = X; + .-+ + X,, is binomial with E[X] = np and
Var(X) = npq and the sample mean X /n satisfies

EX]=p and Var(X) = R

n2 n’

52Indeed7 in this case each sample X, is a “Bernoulli” random variable.
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The de Moivre-Laplace theorem gives us much more information by telling us that each of X
and X has an approximately normal distribution:

X ~ N(np,npq) and XaN (p, m) .
n

The Central Limit Theorem tells us that this result (surprisingly) has nothing to do with coin
flips. In fact, the same statement holds for any iid sequence of random variables.

( )
The Central Limit Theorem (CLT)

Suppose that X1, X, ..., X, is an iid sample with E[X;] = u and Var(X;) = o2. Let us
consider the sum X = X; + --- + X,, and the sample mean
— 1
X=—-—-X

n

1
H-(X1+X2+'”+Xn).

We already know from the LLN above that E[X] = nu, Var(X) = no?, E[X] = u
and Var(X) = o2/n. The CLT tells us, furthermore, that when n is large each of these
random variables is approximately normal:

2
X ~ N(nu,no?) and X~N <,u, U) .
n

It is impossible to overstate the importance of the CLT for applied statistics. It is really
the fundamental theorem of the subjectﬂ In the next two sections we will pursue various
applications. For now, let me illustrate the CLT with a couple of examples.

Visual Example. In a nutshell, the Central Limit Theorem tells us that
adding many independent mistakes smoothes them out.

For example, suppose that X, Xo, X3, ... is an iid sequence of random variables in which each
X, has the following very jagged pdf:

53The proof is not very difficult but it involves “moment generating functions,” which are outside the scope
of this course.
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Now consider the the sum of n independent copies:
X(n) =X1+Xo+- -+ X,.

It is difficult to compute the pdf of X (n) by hand, but my computer knows how to do it@
Here are the pdf’s of the sums X (2), X(3) and X (4) together with their approximating normal
curves, as predicted by the CLT:

The pdf’s are still rather jagged but you can see that they are starting to smooth out a bit.
After adding seven independent observations the smoothing becomes very noticeable. Here is
the pdf of X(7):

54If fx and fy are the pdf’s of independent random variables X and Y, then the pdf of X + Y is given by
the convolution:

Fxov(a) = Jm Fx(O)fr (@ — 1) dt.
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As you can see, the area under the normal curve is now a reasonable approximation for the
area under the pdf. After twelve observations there is almost no difference between the pdf of
X (12) and the normal curve:

-10

Computational Example. Suppose that a fair six-sided die is rolled 100 times and let X
be the number that shows up on the i-th roll. Since the die is fair, each random variable X;
has the same pmf, given by the following table:

k 1 2 3 4 5 6
PXi=R[§ § 3 8 4
From this table one can compute that
p=FE[X;] = g =35 and o? = Var(X;) = % =2.92.
Now let us consider the average of all 100 numbers:
X = ﬁ.(X1+X2+~--+X100).
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Assuming that the rolls are independent, the Law of Large Numbers tells us that

2
E[X]=p=35 and Var(X)

= = (0.0292.
100 0.029

This means that the sample average X is (on average) very close to the true average p = 3.5.

To be specific, let us compute the probability that |X — 3.5| is larger than 0.3. The Central
Limit Theorem tells us that X is approximately normal:

X ~ N(u = 3.5,0% = 0.0292).

Therefore (X — u1)/o is approximately standard normal:

X-—p X-35
o /0.0292

Now we can standardize and look up the desired probability in a table of Z-scores:

~ N(0,1).

P(|X —3.5>03) = P(X <32o0r X > 3.8)
= P(X <3.2) + P(X > 3.8)

X —-35 32-35 X —-35 38-35
=P < + P >
4/0.0292  4/0.0292 1/0.292 1/0.292

X 35 X -35
- P (m < —1.76> +P (m > 1.76)
~ B(—1.76) + [1 — &(1.76)]
= [1 = ®(1.76)] + [1 — ®(1.76)]
=21 — ®(1.76)]
= 2[1 — 0.9608]
— 7.84%.

In summary: If you roll a fair die 100 times and let X be the average of the numbers that
show up, then there is a 7.84% chance of getting X < 3.2 or X > 3.8. Equivalently, there is
a 92.16% chance of getting

3.2 < X < 3.8.

Here is a picture of the approximating normal curve, with vertical lines indicating standard

deviations. I won’t bother to draw the actual histogram of the discrete variable X because
the bars are so skinny|

55T didn’t even bother to use a continuity correction in the computation.
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92 .16 %,

3.92% 37

3.7 5 3%
Averoee of 100 Die Rells

3.6 Tests and Intervals for Proportions

3.7 Tests and Intervals for Means
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