
Math 224 Fall 2021
Homework 4 Drew Armstrong

1. The St Petersburg Paradox. I am running a game. I will let you flip a fair coin until
you get heads. If the first head shows up on the kth flip then I will give you rk dollars.

(a) Compute your expected winnings when r = 1.
(b) Compute your expected winnings when r = 1.5.
(c) Compute your expected winnings when r = 2. Does this make any sense? How much

would you be willing to pay me to play this game?

[Hint: Use the geometric series.]

We will solve all three parts at the same time. Let X be the number of coin flips until you
get heads. We recall that X has a geometric distribution with

P (X = k) = pqk−1 = (1/2)(1/2)k−1 = (1/2)k = 1/2k.

Your winnings are a function of X, namely g(X) = rX . Therefore the expected value of your
winnings is given by

E[g(X)] =

∞∑
k=1

g(k)P (X = k) =

∞∑
k=1

rk · 1/2k =

∞∑
k=1

(r/2)k.

Now let us recall the geometric series. If |x| < 1 then we have

1 + x+ x2 + x3 + · · · = 1/(1− x)

x+ x2 + x3 + · · · = 1/(1− x)− 1 = x/(1− x).

Therefore, if 0 ≤ r < 2 then |r/2| < 1 and the expected value of your winnings is

E[g(X)] =
r

2
+
(r

2

)2
+
(r

2

)3
+ · · · = r/2

1− r/2
=

r

2− r
.

In particular, if r = 1 then you expect to win1

r

2− r
=

1

2− 1
= 1 dollar,

and if r = 1.5 then you expect to win

r

2− r
=

1.5

2− 1.5
= 3 dollars.

These formulas might suggest to me how much to charge to play this game. For example, if
I charge 4 dollars per play when r = 1.5 then on average I will make 1 dollar per play. In
fact, the original interpretation of expected value had to do with rational behavior in games
of chance.

Now, how much should I charge to play the game when r = 2? In this case |r/2| = 1 so the
geometric series does not converge:

E[g(X)] =
r

2
+
(r

2

)2
+
(r

2

)3
+ · · · = 1 + 1 + 1 + · · · =∞.

But surely no rational person would pay an infinite amount of money to play this game!

1Indeed, if r = 1 then you will win 1 dollar no matter what happens, so your winnings are constant.
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Remark: This problem was discussed by Daniel Bernoulli in 1738. It is called a “paradox”
because it seems to give the “wrong answer” based on certain intuitive interpretations of the
expected value. The issue is that probability is an experimental science and our mathematical
concepts are only models of the real world. They give the “right answer” to the kinds of
problems they were designed for, but they need not apply to every kind of problem. The
mathematics discussed in this course was designed to model dice rolling and urn problems. It
has a good track record when applied to physical sciences. Its relevance to social science is
more dubious.

2. Let X be a random variable satisfying E[X] = 1 and E[X2] = 2. Use this to compute

(a) Var(X)
(b) E[(X + 1)2]
(c) Var(2X + 3)

(a): Var(X) = E[X2]− E[X]2 = 2− 12 = 1.

(b): E[(X + 1)2] = E[X2 + 2X + 1] = E[X2] + 2E[X] + 1 = 2 + 2 · 1 + 1 = 5.

Alternatively, we can use the fact that Var(X + 1) = Var(X) and hence

Var(X + 1) = E[(X + 1)2]− E[X + 1]2

Var(X) = E[(X + 1)2]− (E[X] + 1)2

1 = E[(X + 1)2]− (1 + 1)2

5 = E[(X + 1)2].

(c): If a is constant then we recall that Var(aX) = a2Var(X) and Var(X + a) = Var(X). It
follows from these identities that

Var(2X + 3) = Var(2X) = 4 ·Var(X) = 4 · 1 = 4.

Alternatively, we can use the bilinearity of covariance:

Var(2X + 3) = Cov(2X + 3, 2X + 3)

= Cov(2X, 2X) + 2 · Cov(2X, 3) + Cov(3, 3)

= 4 · Cov(X,X) + 2 · 0 + 0

= 4 ·Var(X)

= 4.

3. Standardization. Let X be a random variable with E[X] = µX and Var(X) = σ2X and
consider the random variable

Z =
X − µX
σX

.

(a) Use the linearity of expectation to compute E[Z].
(b) Use the general properties of variance to compute Var(Z).
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(a): We use the linearity of expected value:

E[Z] = E

[
1

σX
(X − µX)

]
=

1

σX
E[X − µX ]

=
1

σX
(E[X]− µX)

=
1

σX
(µX − µX)

= 0.

(b): We use the identities Var(aX) = a2Var(X) and Var(X + a) = Var(X) to get

Var(Z) = Var

(
1

σX
(X − µX)

)
=

1

σ2X
Var(X − µX)

=
1

σ2X
Var(X)

=
1

σ2X
· σ2X

= 1.

Remark: In the next chapter we will use this procedure to study normal random variables. If X
has a “normal distribution” then it will turn out that Z has a “standard normal distribution”,
and we will be able to look up the probabilities P (a < Z < b) in a table.

4. Consider a fair six-sided die with sides labeled {1, 2, 3, 4, 5, 6}. Roll the die twice and let

X = the number you get on the first roll,

Y = the number you get on the second roll,

Z = X + Y.

Compute the variances Var(X), Var(Y ), Var(Z) and the covariances Cov(X,Y ), Cov(X,Z).

Here are the pmf tables for X and Y :

k 1 2 3 4 5 6

P (X = k) 1
6

1
6

1
6

1
6

1
6

1
6

k 1 2 3 4 5 6

P (Y = k) 1
6

1
6

1
6

1
6

1
6

1
6

Since the distributions are identical we will have Var(X) = Var(Y ). Note that

E[X] = 1 · 1

6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
=

21

6
=

7

2

and

E[X2] = 12 · 1

6
+ 22 · 1

6
+ 32 · 1

6
+ 42 · 1

6
+ 52 · 1

6
+ 62 · 1

6
=

91

6
,

hence

Var(X) = E[X2]− E[X]2 =
91

6
−
(

21

6

)2

=
105

36
=

35

12
.
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By assumption the random variables X and Y are independent, hence Cov(X,Y ) = 0.

To compute Var(Z) we can use the formula

Var(Z) = Var(X + Y ) = Var(X) + Var(Y ) + 2 · Cov(X,Y )

= 2 ·Var(X) + 2 · 0

= 2 · 35

12
=

35

6
.

Alternatively, we can write down the pmf table for Z:2

k 2 3 4 5 6 7 8 9 10 11 12

P (Z = k) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Then compute the variance from this.

Finally, we use the bilinearity of covariance to compute

Cov(X,Z) = Cov(X,X + Y ) = Cov(X,X) + Cov(X,Y ) = Var(X) + 0 =
35

12
.

Note that this is positive because an increase in X causes an increase in Z. Alternatively, you
could write out the entire 6 × 11 joint pmf table for X,Z and compute the covariance from
there. Wouldn’t that be fun?

5. Let X,Y : S → R be random variables with the following joint distribution table:

X \ Y 1 2 3

1 1/21 5/21 3/21 9/21

2 4/21 2/21 6/21 12/21

5/21 7/21 9/21

How to read the table: We have SX = {1, 2} and SY = {1, 2, 3}. The entries in the right
column are P (X = k), the entries in the bottom row are P (Y = `) and the entries inside the
table are P (X = k, Y = `).

(a) Use the table to compute P (X + Y ≥ 4).
(b) Use the table to compute E[X] and E[Y ].
(c) Use the table to compute E[XY ] and Cov(X,Y ).

(a): There are three cells of the table corresponding to X + Y ≥ 4. Adding them gives

P (X + Y ≥ 4) = P (X = 1, Y = 3) + P (X = 2, Y = 2) + P (X = 2, Y = 3)

= 3/12 + 2/21 + 6/21

= 11/21.

(b): Reading off the marginal probabilities gives

E[X] =
∑
k

k · P (X = k) = 1 · 9

21
+ 2 · 12

21
=

33

21

2To find this you should write out all 36 elements of the sample space and count the outcomes corresponding
to each value of Z.
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and

E[Y ] =
∑
k

k · P (Y = k) = 1 · 5

21
+ 2 · 7

21
+ 3 · 9

21
=

46

21
.

(c): Reading off the joint probabilities gives

E[XY ] =
∑
k,`

k` · P (X = k, Y = `)

= 1 · 1 · (1/21) + 1 · 2 · (5/21) + 1 · 3 · (3/21)

+ 2 · 1 · (4/21) + 2 · 2 · (2/21) + 2 · 3 · (6/21)

= 72/21,

and hence

Cov(X,Y ) = E[XY ]− E[X] · E[Y ] = (72/21)− (33/21)(46/21) = −2/147.

6. Uncorrelated Does Not Imply Independent. We say that random variables X,Y :
S → R are independent if P (X = k, Y = `) = P (X = k)P (Y = `) for all possible values
k, ` ∈ R. This property implies that E[XY ] = E[X]E[Y ] and hence Cov(X,Y ) = 0. On
the other hand, the identity Cov(X,Y ) = 0 does not necessarily imply that X and Y are
independent. Consider the following example:

X \ Y −1 0 1

−1 0 0 1/4 1/4

0 1/2 0 0 1/2

1 0 0 1/4 1/4

1/2 0 1/2

(a) Explain why these X and Y are not independent.
(b) Use the table to show that Cov(X,Y ) = 0.

(a): These X and Y are not independent because, for example, P (X = −1, Y = −1) = 0,
while P (X = −1)P (Y = −1) = (1/4)(1/2) = 1/8 6= 0.

(b): Reading off the marginal probabilities gives

E[X] =
∑
k

k · P (X = k) = (−1) · (1/4) + 0 · (1/2) + 1 · (1/4) = −1/4 + 1/4 = 0,

E[Y ] =
∑
k

k · P (Y = k) = (−1) · (1/2) + 0 · (0) + 1 · (1/2) = −1/2 + 1/2 = 0,
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and reading off the joint probabilities gives

E[XY ] =
∑
k,`

k` · P (X = k, Y = `)

= (−1) · (−1) · (0) + (−1) · 0 · (0) + (−1) · 1 · (1/4)

+ 0 · (−1) · (1/2) + 0 · 0 · (0) + 0 · 1 · (0)

+ (−1) · (0) + 1 · 0 · (0) + 1 · 1 · (1/4)

= −1/4 + 1/4

= 0.

Hence

Cov(X,Y ) = E[XY ]− E[X] · E[Y ] = 0− 0 · 0 = 0.

7. Multinomial Covariance. Suppose that a fair s-sided die is rolled n times, and let Xi

be the number of times that the ith face shows up.

(a) Compute Var(Xi) for any i. [Hint: Think of each roll as a coin flip with H = “you get
side i” and T = “you don’t get side i”. Use the formula for variance of a binomial.]

(b) Compute Var(Xi +Xj) for any i 6= j. [Hint: Think of each roll as a coin flip with H =
“you get side i or j” and T = “you get some other side”.]

(c) Combine (a), (b) to compute Cov(Xi, Xj). Simplify your formula as much as possible.

(a): We can think of Xi as a binomial random variable with H = “you get side i” and T =
“you don’t get side i”, so that P (H) = 1/s and P (T ) = (s− 1)/s. From the formula for the
variance of a binomial random variable we obtain

Var(Xi) = n · P (H) · P (T ) = n · 1

s
· s− 1

s
=
n(s− 1)

s2
.

(b): Note that Xi + Xj is the number of times that sides i of j show up. We can think of
this as a binomial random variable with H = “you get side i or j” and T = “you get some
other side”, so that P (H) = 2/s and P (T ) = (s− 2)/s. From the formula for the variance of
a binomial random variable we obtain

Var(Xi +Xj) = n · P (H) · P (T ) = n · 2

s
· s− 2

s
=

2n(s− 2)

s2
.

(c): Combining parts (a) and (b) gives

Var(Xi) + Var(Xj) + 2Cov(Xi, Xj) = Var(Xi +Xj)

2Cov(Xi, Xj) = Var(Xi +Xj)−Var(Xi)−Var(Xj)

2Cov(Xi, Xj) = Var(Xi +Xj)− 2 ·Var(Xi)

=
2n(s− 2)

s2
− 2n(s− 1)

s2

=
2n

s2
[(�s− 2)− (�s− 1)]

=
2n

s2
(−1),

and hence Cov(Xi, Xj) = −n/s2. Note that this is always negative.
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Discussion: We can use exactly the same method to solve the problem in the case of a biased
die. Suppose that P (side i) = pi, so that p1 +p2 + · · ·+ps = 1. In this case one can show that

Var(Xi) = npi(1− pi) and Var(Xi +Xj) = n(pi + pj)(1− pi − pj),
so that

Cov(Xi, Xj) =
1

2
[Var(Xi +Xj)−Var(Xi)−Var(Xj)]

=
1

2
[n(pi + pj)(1− pi − pj)− npi(1− pi)− npj(1− pj)]

=
n

2

[
��pi +��pj −��p

2
i − 2pipj −�

�p2j −��pi + ��p
2
i −��pj +

�
�p2j

]
=
n

2
[−2pipj ]

= −npipj .
Wow, those cancellations seemed miraculous. There must be a more clever way to do this. As
always, it is easier to deal with Bernoulli random variables. Let us write

Bik =

{
1 if side i shows up on the kth roll,

0 otherwise,

so that E[Bik] = pi and Xi =
∑

k Bik = Bi1 + Bi2 + · · · + Bin. Using the linearity of the
expected value gives3

E[Xi] = E[Bi1] + E[Bi2] + · · ·+ E[Bin] = pi + pi + · · ·+ pi = npi.

Then since BikBjk = 0 for all i 6= j and since Bik, Bj` are independent for all k 6= ` we have

E[XiXj ] = E

[(∑
k

Bik

)(∑
`

Bj`

)]

= E

∑
k=`

BikBj` +
∑
k 6=`

BikBj`


= E

0 +
∑
k 6=`

BikBj`


=
∑
k 6=`

E[BikBj`]

=
∑
k 6=`

E[Bik]E[Bj`]

=
∑
k 6=`

pipj

= (n2 − n)pipj .

In the last step we used the fact that there are n2 − n pairs (k, `) where k 6= `. Finally,

Cov(Xi, Xj) = E[XiXj ]− E[Xi]E[Xj ] = (n2 − n)pipj − (npi)(npj) = −npipj .
That was a bit more intuitive I think; i.e., fewer tricks required.

3Here we are replicating the proof that the expected value of a binomial is np.


