
Math 224 Fall 2017
Homework 5 Drew Armstrong

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zim-
merman:

• Section 3.1, Exercises 3, 10.
• Section 3.3, Exercises 2, 3, 10, 11.
• Section 5.6, Exercises 2, 4.
• Section 5.7, Exerciese 4, 14.

Solutions to Book Problems.

3.1-3. Customers arrive randomly at a bank teller’s window. Given that a customer arrived
in a certain 10-minute period, let X be the exact time within the 10 minutes that the customer
arrived. We will assume that X is U(0, 10), i.e., that X is uniformly distributed on the real
interval [0, 1] ⊆ R.

(a) Find the pdf of X. Solution:

fX(x) =

{
1/10 if 0 ≤ x ≤ 10

0 otherwise

Here is a picture (not to scale):

(b) Compute P (X ≥ 8). Solution: We could compute an integral:

P (X ≥ 8) =

∫ 10

8
1/10 dx = x/10

∣∣∣10
8

= 10/10− 8/10 = 2/10 = 1/5.

Or we could just recognize that this is the area of a rectangle with height 1/10 and
width 2:
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(c) Compute P (2 ≤ X < 8). Solution: Skipping the integral, we’ll compute this as the
area of a rectangle with width 2 and height 1/10:

Remark: For general 0 ≤ a ≤ b ≤ 10 we will have P (a ≤ X ≤ b) = b− a.
(d) Compute the expected value E[X]. Solution: We have

E[X] =

∫ ∞
−∞

xfX(x) dx =

∫ 10

0
x/10 = x2/20

∣∣∣10
0

= 100/20− 0/20 = 5.

Indeed, this agrees with our intuition that the distribution is symmetric about x = 5.
(e) Compute the variance Var(X). Solution: We could first compute E[X2] first, but

instead we’ll go directly from the definition. Since µ = 5 we have

Var(X) = E[(X − µ)2] =

∫ ∞
−∞

(x− µ)2fX(x) dx

=

∫ 10

0
(x− 5)2/10 dx

=

∫ 10

0
(x2 − 10x+ 25)/10 dx

= (x3/3− 10x2/2 + 25x)/10
∣∣∣10
0

= (1000/3− 1000/2 + 250)/10

= (2000/6− 3000/6 + 1500/6)/10

= 50/6.

Indeed, if X ∼ U(a, b) then the front of the book says that Var(X) = (b − a)2/12,
which agrees with our answer when a = 0 and b = 10.

3.1-10. The pdf1 of X is f(x) = c/x2 with support 1 < x < ∞. (This means that the
function is zero outside of this range.)

1The textbook is lying here because we don’t know yet whether this really is a pdf.
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(a) Calculate the value of c so that f(x) is a pdf. Solution: We must have

1 =

∫ ∞
1

f(x) dx

=

∫ ∞
1

c/x2 dx

= −c/x
∣∣∣∞
0

= 0− (−c/1)

= c.

(b) Show that E[X] is not finite. Solution: If the expected value existed then it would
satisfy the formula

E[X] =

∫ ∞
1

xf(x) dx =

∫ ∞
1

1/x dx.

But the antiderivative of 1/x is the natural logarithm log(x), so that∫ ∞
1

1/x dx =
[

lim
x→∞

log(x)
]
− log(1) =

[
lim
x→∞

log(x)
]

=∞.

If the random variable X represents some kind of waiting time, then we should expect
to wait forever!

[Moral of the Story: The expected value and variance are useful tools. However: (1) Some
continuous random variables X have an infinite expected value E[X] = ∞. (2) Some random
variables with finite expected value E[X] < ∞ still have infinite variance Var(X) = ∞. So be
careful.]

3.3-2. If Z ∼ N(0, 1) has a standard normal distribution, compute the following probabil-
ities. We will use the general formulas

• P (a ≤ Z ≤ b) = Φ(b)− Φ(a)
• Φ(−z) = 1− Φ(z)

and we will look up the values for Φ(z) in the table on page 494 of the textbook.

(a)

P (0 ≤ Z ≤ 0.87) = Φ(0.87)− Φ(0) = 0.8078− 0.5000 = 30.78%

(b)

P (−2.64 ≤ Z ≤ 0) = Φ(0)− Φ(−2.64)

= Φ(0)− [1− Φ(2.64)]

= Φ(2.64) + Φ(0)− 1

= 0.9959 + 0.5000− 1 = 49.59%.

(c)

P (−2.13 ≤ Z ≤ −0.56) = Φ(−0.56)− Φ(−2.13)

= [1− Φ(0.56)]− [1− Φ(2.13)]

= Φ(2.13)− Φ(0.56)

= 0.9834− 0.7123 = 27.11%.



4

(d)

P (|Z| > 1.39) = P (Z > 1.39) + P (Z < −1.39)

= 1− Φ(1.39) + Φ(−1.39)

= 1− Φ(1.39) + [1− Φ(1.39)]

= 2 [1− Φ(1.39)] = 2 [1− 0.9177] = 16.46%.

(e)

P (Z < −1.62) = Φ(−1.62) = 1− Φ(1.62) = 1− 0.9474 = 5.26%.

(f)

P (|Z| > 1) = P (Z > 1) + P (Z < −1)

= 1− Φ(1) + Φ(−1)

= 1− Φ(1) + [1− Φ(1)]

= 2 [1− Φ(1)] = 2 [1− 0.8413] = 31.74%.

(g) After parts (d) and (f) we observe the general pattern:

P (|Z| > z) = 2 [1− Φ(z)] .

Therefore we have

P (|Z| > 2) = 2 [1− Φ(2)] = 2 [1− 0.9772] = 4.56%

(h) and also

P (|Z| > 3) = 2 [1− Φ(3)] = 2 [1− 0.9987] = 2.6%.

3.3-3. Suppose Z ∼ N(0, 1). Find values of c to satisfy the following equations.

(a) P (Z ≥ c) = 0.025. Solution: We are looking for c such that

P (Z ≥ c) = 0.025

1− P (Z ≤ c) = 0.025

1− Φ(c) = 0.025

0.9750 = Φ(c).

My trusty table tells me that Φ(1.96) = 0.975, and hence c = 1.96.
(b) P (|Z| ≤ c) = 0.95. Solution: We are looking for c such that

P (|Z| ≤ c) = 0.95

P (−c ≤ Z ≤ c) = 0.95

Φ(c)− Φ(−c) = 0.95

Φ(c)− [1− Φ(c)] = 0.95

2Φ(c)− 1 = 0.95

Φ(c) = 1.95/2 = 0.9750.

So the answer is the same as for part (a), i.e., c = 1.96.
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(c) P (Z > c) = 0.05. Solution: Following the same steps as in part (a) gives

P (Z > c) = 0.05

1− P (Z > c) = 0.05

1− Φ(c) = 0.05

0.9500 = Φ(c).

We look up in the table that Φ(1.64) = 0.9495 and Φ(1.65) = 0.9505. Therefore we
must have Φ(1.645) ≈ 0.9500 and hence c ≈ 1.645.

(d) P (|Z| ≤ c) = 0.90. Solution: Following the same steps as in part (b) gives

P (|Z| ≤ c) = 0.90

P (−c ≤ Z ≤ c) = 0.90

Φ(c)− Φ(−c) = 0.90

Φ(c)− [1− Φ(c)] = 0.90

2Φ(c)− 1 = 0.90

Φ(c) = 1.90/2 = 0.9500.

So the answer is the same as for part (c), i.e., c ≈ 1.645.

3.3-10. Let X ∼ N(µ, σ2) be normal and for any real numbers a, b ∈ R with a 6= 0 define
the random variable

Y = aX + b.

By properties of expectation and variance we have

E[Y ] = E[aX + b] = aE[X] + b = aµ+ b

and

Var(Y ) = Var(aX + b) = Var(aX) = a2Var(X) = a2σ2.

I claim, furthermore thatn Y is also normal, i.e., that

Y ∼ N(aµ+ b, a2σ2).

Proof: To show that Y is normal, we want to show for any real numbers y1 ≤ y2 that

(?) P (y1 ≤ Y ≤ y2) =

∫ w=y2

w=y1

1√
2πa2σ2

e−(w−aµ−b)
2/2a2σ2

dw.

To show this, we can use the fact that X is normal to obtain2

P (y1 ≤ Y ≤ y2) = P (y1 ≤ aX + b ≤ y2)
= P (y1 − b ≤ aX ≤ y2 − b)

= P

(
y1 − b
a
≤ X ≤ y2 − b

a

)
=

∫ x=(y1−b)/a

x=(y1−b)/a

1√
2πσ2

e−(x−µ)
2/2σ2

dx.(∗)

2In the third line here we will assume that a > 0. The proof for a < 0 is exactly the same except that it will
switch the limits of integration.
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To show that the expressions (∗) and (?) are equal we will make the substitution

w = ax+ b,

dw = a · dx.

Then we observe that∫ w=y2

w=y1

1√
2πa2σ2

e−(w−aµ−b)
2/2a2σ2

dw =

∫ x=(y1−b)/a

x=(y1−b)/a

1√
2πa2σ2

e−(ax+�b−aµ−�b)
2/2a2σ2

a · dx

=

∫ x=(y1−b)/a

x=(y1−b)/a

�a√
2π��a

2σ2
e−��a

2(x−µ)2/2��a2σ2
dx

=

∫ x=(y1−b)/a

x=(y1−b)/a

1√
2πσ2

e−(x−µ)
2/2σ2

dx

as desired. ///

[Remark: Sadly this proof is not very informative. We went to the trouble because we are very
interested in the special case when a = 1/σ and b = −µ/σ. In this case the result becomes

X ∼ N(µ, σ2) =⇒ Y =
X − µ
σ

∼ N(0, 1).

We will use this fact in almost every problem below.]

3.3-11. A candy maker produces mints that have a label weight of 20.4 grams. We assume
that the distribution of the weights of these mints is N(21.37, 0.16).

(a) Let X denote the weight of a single mint selected at random from the production line.
Find P (X > 22.07).

Solution: Since X ∼ N(21.37, 0.16) we have µ = 21.37 and σ2 = 0.16, hence σ = 0.4.
It follows from the remark just above that (X − 21.37)/0.4 has a standard normal
distribution and hence

P (X > 22.07) = P (X − 21.37 > 0.7)

= P

(
X − 21.37

0.4
> 1.75

)
= 1− P

(
X − 21.37

0.4
≤ 1.75

)
= 1− Φ(1.75) = 1− 0.9599 = 4.01%.

(b) Suppose that 15 mints are selected independently and weighed. Let Y be the number
of these mints that weigh less than 20.857 grams. Find P (Y ≤ 2).

Solution: Let X1, X2, . . . , X15 be the weights of the 15 randomly selected mints. By
assumption each of these weights has distribution N(21.37, 0.16) so that each random
variable (Xi − 21.37)/0.4 is standard normal. For each i we have

P (Xi < 20.875) = P (Xi − 21.37 < −0.531)

= P

(
Xi − 21.37

0.4
< −1.2825

)
≈ Φ(−1.28) = 1− Φ(1.28) = 1− 0.8995 = 10.05%.
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In other words, we can think of each of the 15 selected mints as a coin flip where
“heads” means “the weight is less than 20.857” and the probability of heads is ap-
proximately 10%. Then Y is a binomial random variable with parameters n = 15 and
p ≈ 0.1 and we conclude that

P (Y ≤ 2) ≈
2∑

k=0

(
15

k

)
(0.1)k(0.9)15−k

= (0.9)15 + 15 · (0.1)(0.9)14 + 105 · (0.1)2(0.9)13 ≈ 81.59%.

In other words, there is an 80% chance that no more than 2 out of every 15 mints will
weigh less than 20.857 grams. I don’t know if that’s good.

5.6-2. Let Y = X1 + X2 + · · · + X15 be the sum of a random sample of size 15 from a
distribution whose pdf is f(x) = (3/2)x2 with support −1 < x < 1. Using this pdf, one can
use a computer to show that P (−0.3 ≤ Y ≤ 1.5) = 0.22788. On the other hand, we can use
the Central Limit Theorem to approximate this probability.

Solution: The distribution in question looks like this:

Since the distribution is symmetric about zero, we conclude without doing any work that
µ = E[Xi] = 0 for each i. To find σ, however, we need to compute an integral. For any i, the
variance of Xi is defined by

σ2 = Var(Xi) = E
[
(Xi − 0)2

]
= E[X2

i ]

=

∫ 1

−1
x2 · f(x) dx

=

∫ 1

−1
x2 · 3

2
x2 dx

=
3

2

∫ 1

−1
x4 dx

=
3

2
· x

5

5

∣∣∣∣1
−1

=
3

2
· 1

5
− 3

2
· (−1)5

5
=

6

10
=

3

5
.

It follows that Y has mean and variance given by

µYE[Y ] = E[X1] + E[X2] + · · ·+ E[X15] = 0 + 0 + · · ·+ 0 = 0
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and

σ2Y = Var(Y ) = Var(X1) + Var(X2) + · · ·+ Var(X15) =
3

5
+

3

5
+ · · ·+ 3

5
= 15 · 3

5
= 9,

By the Central Limit Theorem, the sum Y is approximately normal and hence (Y −µY )/σY =
Y/3 is approximately standard normal. We conclude that

P (−0.3 ≤ Y ≤ 0.5) = P

(
−0.3

3
≤ Y

3
≤ 1.5

3

)
= P

(
−0.1 ≤ Y

3
≤ 0.5

)
≈ Φ(0.5)− Φ(−0.1)

= Φ(0.5)− [1− Φ(0.1)]

= Φ(0.5) + Φ(0.1)− 1

= 0.6915 + 0.5398− 1 = 23.13%.

That’s reasonably close to the exact value 22.788%, I guess. We would get a more accurate
result by taking more than 15 samples.

5.6-4. Approximate P (39.75 ≤ X ≤ 41.25), where X is the mean of a random sample of
size 32 from a distribution with mean µ = 40 and σ2 = 8.

Solution: In general the sample mean is defined by X = (X1 + X2 + · · · + Xn)/n, where
each Xi has E[Xi] = µ and Var(Xi) = σ2. From this we compute that

E[X] =
1

n
(E[X1] + E[X2] + · · ·+ E[Xn]) =

1

n
(µ+ µ+ · · ·+ µ) =

nµ

n
= µ

and

Var(X) =
1

n2
(Var(X1) + · · ·+ Var(Xn)) =

1

n2
(σ2 + · · ·+ σ2) =

nσ2

n2
=
σ2

n
.

The Central Limit Theorem says that if n is large then X is approximately normal:

X ≈ N(µ, σ2/n).

In the case n = 32, µ = 40 and σ2 = 8 we obtain

X ≈ N(40, 8/32) = N(40, (1/2)2).

It follows that (X − 40)/(1/2) = 2(X − 40) is approximately N(0, 1) and hence

P (39.75 ≤ X ≤ 41.25) = P
(
−0.25 ≤ X − 40 ≤ 1.25

)
= P

(
−0.5 ≤ 2(X − 40) ≤ 2.5

)
≈ Φ(2.5)− Φ(−0.5)

= Φ(2.5)− [1− Φ(0.5)]

= Φ(2.5) + Φ(0.5)− 1

= 0.9938 + 0.6915− 1 = 68.53%.

5.7-4. Let X equal the number out of n = 48 mature aster seeds that will germinate when
p = 0.75 is the probability that a particular seed germinates. Approximate P (35 ≤ X ≤ 40).

Solution: We observe that X is a binomial random variable with pmf

P (X = k) =

(
48

k

)
(0.75)k(0.25)48−k.
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My laptop tells me that the exact probability is

P (35 ≤ X ≤ 40) =

40∑
k=35

P (X = k) =

40∑
k=35

(
48

k

)
(0.75)k(0.25)48−k = 63.74%.

If we want to compute an approximation by hand then we should use the de Moivre-Laplace
Theorem (a special case of the Central Limit Theorem), which says that X is approximately
normal with mean np = 36 and variance σ2 = np(1 − p) = 9, i.e., standard deviation σ = 3.
Let X ′ be a continuous random variable with X ′ ∼ N(36, 32). Here is a picture comparing
the probability mass function of the discrete variable X to the probability density function
of the continuous variable X ′:

The picture suggests that we should use the following continuity correction:3

P (35 ≤ X ≤ 40) ≈ P (34.5 ≤ X ′ ≤ 40.5).

And then because (X ′ − 36)/3 is standard normal we obtain

P (34.5 ≤ X ′ ≤ 40.5) = P (−1.5 ≤ X ′ − 36 ≤ 4.5)

= P

(
−0.5 ≤ X ′ − 36

3
≤ 1.5

)
= Φ(1.5)− Φ(−0.5)

= Φ(1.5)− [1− Φ(0.5)]

= Φ(1.5) + Φ(0.5)− 1 = 0.9332 + 0.6915− 1 = 62.47%

Not too bad.

5.7-14. A (fair six-sided) die is rolled 24 independent times. Let Xi be the number that
appears on the ith roll and let Y = X1 + X2 + · · · + X24 be the sum of these numbers. The
pmf of each Xi is given by the following table

k 1 2 3 4 5 6
P (Xi = k) 1/6 1/6 1/6 1/6 1/6 1/6

3If you don’t do this then you will still get a reasonable answer, it just won’t be as accurate.
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So we find that:

E[Xi] = (1 + 2 + 3 + 4 + 5 + 6)/6 = 7/2,

E[X2
i ] = (12 + 22 + 32 + 42 + 52 + 62)/6 = 91/6,

Var(Xi) = E[X2
i ]− E[Xi]

2 = 91/6− (7/2)2 = 35/12.

Then the expected value and variance of Y are given by

E[Y ] = 24 · E[Xi] = 24 · 7

2
= 84 and Var(Y ) = 24 ·Var(Xi) = 24 · 35

12
= 70

and the Central Limit Theorem tells us that Y is approximately N(84, 70). Let Y ′ be a
continuous random variable that is exactly N(84, 70), so that (Y ′ − 84)/

√
70 has a standard

normal distribution.

(a) Compute P (Y ≥ 86). Solution:

P (Y ≥ 86) ≈ P (Y ′ ≥ 85.5)

= P (Y ′ − 84 ≥ 1.5)

≈ P
(
Y ′ − 84√

70
≥ 0.18

)
= 1− Φ(0.18) = 1− 0.5714 = 42.86%.

(b) Compute (P < 86). Solution: This is the complement of part (a):

P (Y < 86) = 1− P (Y ≥ 86) ≈ 1− 0.4286 = 57.14%.

(c) Compute P (70 < Y ≤ 86). Solution:

P (70 < Y ≤ 86) ≈ P (70.5 ≤ Y ′ ≤ 86.5)

= P (−13.5 ≤ Y ′ − 84 ≤ 2.5)

≈ P
(
−1.61 ≤ Y ′ − 84√

70
≤ 0.30

)
= Φ(0.30)− Φ(−1.61)

= Φ(0.30)− [1− Φ(1.61)]

= Φ(0.30) + Φ(1.61)− 1 = 0.6179 + 0.9463− 1 = 56.42%.

Here is a picture explaining the continuity correction that we used in the first step:
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Additional Problems.

1. The Normal Curve. Let µ, σ2 ∈ R be any real numbers (with σ2 > 0) and consider
the graph of the function

n(x) =
1√

2πσ2
e−(x−µ)

2/2σ2
.

(a) Compute the first derivative n′(x) and show that n′(x) = 0 implies x = µ.
(b) Compute the second derivative n′′(x) and show that n′′(µ) < 0, hence the curve has a

local maximum at x = µ.
(c) Show that n′′(x) = 0 implies x = µ+σ or x = µ−σ, hence the curve has inflections at

these points. [The existence of inflections at µ+ σ and µ− σ was de Moivre’s original
motivation for defining the standard deviation.]

Solution: The chain rule tells us that for any function f(x) we have

d

dx
ef(x) = ef(x) · d

dx
f(x).

Applying this to the function n(x) gives

n′(x) =
1√

2πσ2
· e−(x−µ)2/2σ2 · −1

2σ2
2(x− µ) =

−1√
8πσ6

· e−(x−µ)2/2σ2 · (x− µ).

We observe that the expression inside the box is never zero. In fact, it is always strictly
negative. Therefore we have n′(x) = 0 precisely when (x − µ) = 0, or, in other words, when
x = µ. This tells us that there is a horizontal tangent when x = µ. To determine whether this
is a maximum or a minimum we should compute the second derivative. Using the product
rule gives

n′′(x) =
d

dx

[
−1√
8πσ6

· e−(x−µ)2/2σ2 · (x− µ)

]
=

−1√
8πσ6

· d
dx

[
e−(x−µ)

2/2σ2 · (x− µ)
]

=
−1√
8πσ6

·
[
e−(x−µ)

2/2σ2 · −1

2σ2
2(x− µ) · (x− µ) + e−(x−µ)

2/2σ2

]
=

−1√
8πσ6

· e−(x−µ)2/2σ2 ·
[
−(x− µ)2

σ2
+ 1

]
.

Then plugging in x = µ gives

n′′(µ) =
−1√
8πσ6

< 0,

which implies that the graph of n(x) curves down at x = µ, so it must be a local maximum.
Finally, we observe that the boxed formula in the following expression is always nonzero (in
fact it is always negative):

n′′(x) =
−1√
8πσ6

· e−(x−µ)2/2σ2 ·
[
−(x− µ)2

σ2
+ 1

]
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Therefore we have n′′(x) = 0 precisely when

−(x− µ)2

σ2
+ 1 = 0

(x− µ)2

σ2
= 1

(x− µ)2 = σ2

x− µ = ±σ
x = µ± σ.

In other words, the graph of n(x) has inflection points when x = µ ± σ. As we observed in
the course notes, the height of these inflection points is always around 60% of the height of
the maximum. This gives the “bell curve” its distinctive shape:


