Problem 1. Surface Area. Fix an angle $0 \le \alpha < \pi$ and let *D* be the region on the surface of a sphere of radius 1 with angle $\le \alpha$ from the vertical:¹

- (a) Find a parametrization for D of the form $\mathbf{r}(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle$.
- (b) Use your parametrization to compute the surface area of D.

Problem 2. Surface Area. Let D be the surface of the cone $z^2 = x^2 + y^2$ for values z between 0 and 1:

- (a) Find a parametrization for D of the form $\mathbf{r}(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle$.
- (b) Use your parametrization to compute the surface area of D.

Problem 3. Gravitational Potential Near the Surface of a Planet. Choose a coordinate system near the surface of a planet, so that z = 0 is the ground and the z-axis points "up". A particle of mass m at a point (x, y, z) with $z \ge 0$ feels a constant gravitational force of $\mathbf{F}(x, y, z) = \langle 0, 0, -mg \rangle$.

(a) Suppose that the particle has initial position and initial velocity as follows:

$$\mathbf{r}(0) = \langle 0, 0, 0 \rangle,$$

$$\mathbf{r}'(0) = \langle u, v, w \rangle.$$

Integrate Newton's equation $\mathbf{F} = m\mathbf{r}''(t)$ to find $\mathbf{r}'(t)$ and $\mathbf{r}(t)$.

¹On the Earth, this is the region above latitute $(90 - \alpha)$ degrees North.

(b) Find a formula for the kinetic energy at time t:

$$KE(t) = \frac{1}{2}m \|\mathbf{r}'(t)\|^2.$$

- (c) Find a scalar field f(x, y, z) such that $\mathbf{F} = -\nabla f$ and f(0, 0, 0) = 0. This f is called the gravitational potential of the particle.²
- (d) Find a formula for the potential energy at time t:

$$PE(t) = f(\mathbf{r}(t)).$$

(e) Check that the total mechanical energy KE(t) + PE(t) is constant.

Problem 4. Conservative Vector Fields. Consider the following vector fields:

$$\mathbf{F}(x, y, z) = \langle y + z, x + z, x + y \rangle,$$

$$\mathbf{G}(x, y, z) = \langle -y + z, x + z, x + y \rangle.$$

- (a) Compute $\nabla \times \mathbf{F}$ and $\nabla \times \mathbf{G}$. Observe that \mathbf{F} is conservative, while \mathbf{G} is not.
- (b) Now think of **F** and **G** as force fields. Compute the work done by **F** and **G** on a particle of mass 1 traveling around the circle $\mathbf{r}(t) = \langle \cos t, \sin t, 0 \rangle$ for $0 \le t \le 2\pi$.
- (c) Find a scalar field f(x, y, z) such that $\mathbf{F} = \nabla f$.

Problem 5. Div, Grad, Curl. Consider a scalar field f(x, y, z) and a vector field $\mathbf{F}(x, y, z) = \langle P(x, y, z), Q(x, y, z), R(x, y, z) \rangle$. Then we define vector fields called the "gradient of f" and the "curl of \mathbf{F} ":

$$Grad(f) = \nabla f = \langle f_x, f_y, f_z \rangle,$$

$$Curl(\mathbf{F}) = \nabla \times \mathbf{F} = \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle.$$

We also define a scalar field called the "divergence of \mathbf{F} ":

$$\operatorname{Div}(\mathbf{F}) = \nabla \bullet \mathbf{F} = P_x + Q_y + R_z.$$

- (a) Check that $\operatorname{Curl}(\operatorname{Grad}(f)) = \nabla \times (\nabla f) = \langle 0, 0, 0 \rangle$.
- (b) Check that $Div(Curl(\mathbf{F})) = \nabla \bullet (\nabla \times \mathbf{F}) = 0.$

²Actually, the choice f(0,0,0) = 0 is arbitrary. We are just saying that a particle on the ground has zero gravitational potential. Only **changes** in potential energy are physically meaningful.