
Math 211 Summer 2022
Homework 4 Drew Armstrong

Problem 1. Integration over a Rectangle. Let f(x, y) = 6x2y and consider the rectangle
R where −1 ≤ x ≤ 1 and 0 ≤ y ≤ 4.

(a) Compute the integral
∫∫
R f(x, y) dxdy by integrating over x first.

(b) Compute the integral
∫∫
R f(x, y) dxdy by integrating over y first. Observe that you

get the same answer.

(a): We have ∫∫
R
f dA =

∫∫
R

6x2y dxdy

=

∫ 4

0

(∫ 1

−1
6x2y dx

)
dy

=

∫ 4

0

[
2x3y

]1
−1

dy

=

∫ 4

0

[
2(1)2y − 2(−1)3y

]
dy

=

∫ 4

0
4y dy

=
[
2y2
]4
0

= 32.

(b): We have ∫∫
R
f dA =

∫∫
R

6x2y dxdy

=

∫ 1

−1

(∫ 4

0
6x2y dy

)
xy

=

∫ 1

−1

[
3x2y2

]4
0
dy

=

∫ 1

−1

[
3x2(4)2 − 3x2(0)2

]
dy

=

∫ 1

−1
48x2 dx

=
[
16x3

]1
−1

= 16(1)3 − 16(−1)3

= 32.

Remark: Since the integrand 6x2y is separable, we could also write∫∫
6x2y dxdy = 6

∫ 1

−1
x2 dx

∫ 4

0
y dy



= 6 ·
[

1

3
x3
]1
−1

·
[

1

2
y2
]4
0

= · · · = 32.

Problem 2. Polar Coordinates. Cartesian coordinates (x, y) and polar coordinates (r, θ)
are related as follows:{

x = r cos θ
y = r sin θ

}
⇐⇒

{
r =

√
x2 + y2

θ = arctan(y/x)

}
We will use the following notation1 for the determinants of the Jacobian matrices:

∂(x, y)

∂(r, θ)
= det

(
xr xθ
yr yθ

)
and

∂(r, θ)

∂(x, y)
= det

(
rx ry
θx θy

)
.

(a) Compute ∂(x, y)/∂(r, θ).
(b) Compute ∂(r, θ)/∂(x, y) and verify that

∂(x, y)

∂(r, θ)
· ∂(r, θ)

∂(x, y)
= 1.

(a): First we compute the partial derivatives:

xr = cos θ,

xθ = −r sin θ,

yr = sin θ,

yθ = r cos θ.

Then we compute the determinant:

det

(
xr xθ
yr yθ

)
= det

(
cos θ −r sin θ
sin θ r cos θ

)
= (cos θ)(r cos θ)− (sin θ)(−r sin θ)

= r cos2 θ + r sin2 θ)

= r
(
cos2 θ + sin2 θ

)
= r.

(b): First we compute the partial derivatives:

rx =
1

2
(x2 + y2)−1/2(2x) =

x√
x2 + y2

,

ry =
1

2
(x2 + y2)−1/2(2y) =

y√
x2 + y2

,

θx =
1

(y/x)2 + 1
· −y
x2

= · · · = −y
x2 + y2

,

θy =
1

(y/x)2 + 1
· 1

x
= · · · = x

x2 + y2
.

1Warning: Just as dy/dx is not a quotient of numbers, ∂(x, y)/∂(r, θ) is not a quotient of numbers. It’s just
a notation for the determinant of the Jacobian matrix.



Then we compute the determinant:

det

(
rx ry
θx θy

)
= det

(
x/
√
x2 + y2 y/

√
x2 + y2

−y/(x2 + y2) x/(x2 + y2)

)
=

x√
x2 + y2

· x

x2 + y2
− −y
x2 + y2

· y√
x2 + y2

=
x2 + y2

(x2 + y2)3/2

=
1√

x2 + y2
.

Since r =
√
x2 + y2 this implies that

∂(x, y)

∂(r, θ)
· ∂(r, θ)

∂(x, y)
= r · 1

r
= 1,

as expected.

Remark: It’s pretty cool that we can predict the answer to part (b) without having to do the
messy computation.

Problem 3. Integration Over a Tetrahedron. Let E be the solid tetrahedron in R3 with
vertices (0, 0, 0), (1, 0, 0), (0, 2, 0) and (0, 0, 3).

(a) Find a parametrization for this region.
(b) Use your parametrization to compute the volume of E.

(a): First we fix a value of x between 0 and 1. Then y can range between 0 and 2(1 − x).
After choosing y, then z can range between 0 and 3(1− x− y/2). Here is a picture:



The red line in the x, y-plane has equation x/1 + y/2 = 1 because it has intercepts (1, 0) and
(0, 2). The blue plane has equation x/1 + y/2 + z/3 = 1 because it has intercepts (1, 0, 0),
(0, 2, 0) and (0, 0, 3).

(b): The volume of the tetrahedron is
∫∫∫

E 1 dV =
∫∫∫

E 1 dxdydz. Because of the parametriza-
tion we must integrate over z, then y, then x:∫∫∫

E
1 dxdydz =

∫ 1

0

(∫ 2(1−x)

0

(∫ 3(1−x−y/2)

0
1 dz

)
dy

)
dx

=

∫ 1

0

(∫ 2(1−x)

0
3(1− x− y/2) dy

)
dx

=

∫ 1

0

[
3(y − xy − y3/6)

]2(1−x)
0

dx

= 3

∫ 1

0

[
(1− x)y − y3/6)

]2(1−x)
0

dx

= 3

∫ 1

0

[
2(1− x)2 − 8(1− x)3/6

]
dx

= 6

∫ 1

0

[
(1− x)2 − 4(1− x)3/6

]
dx

= 6 ·
[

1

3
(1− x)3(−1)− 1

6
(1− x)4(−1)

]1
0

= 6 ·
[

1

3
− 1

6

]
= 6 · 1

6
= 1.

What a nice answer.

Remark: In general, the tetrahedron with vertices (0, 0, 0), (a, 0, 0), (0, b, 0) and (0, 0, c) has
volume abc/6. The easiest way to prove this is to first prove it for a = b = c = 1 and then use
a stretching argument as in Problem 5(b).

Problem 4. Spherical Coordinates. Consider the solid region E ⊆ R3 that is inside the
sphere x2 + y2 + z2 ≤ 1 and above the cone z2 = x2 + y2 with z ≥ 0. Assume that this region
has constant density 1 unit of mass per unit of volume.

(a) Use spherical coordinates to compute the mass m =
∫∫∫

E 1 dV .
(b) Compute the moment about the xy-plane, Mxy =

∫∫∫
E z dV , and use this to find the

center of mass. [Hint: Because the shape has rotational symmetry around the z-axis
we know that Mxz = Myz = 0.]

(a): Here is a picture of the region:



Note that the cone has slope 1. Indeed, if we set y = 0 then the equation of the cone becomes

z2 = x2 + 02

z2 − x2 = 0

(z − x)(z + x) = 0.

This implies that z = x or z = −x, which gives two lines of slope +1 and −1 in the xz-plane.
This tells us that the angle ϕ from the vertical goes from 0 to π/4. The distance ρ from the
origin goes from 0 to 1 and the angle θ around the z-axis goes from 0 to 2π. The mass is

m =

∫∫∫
E

1 dV

=

∫∫∫
E
ρ2 sinϕdρdθdϕ

=

∫ 2π

0
dθ ·

∫ π/4

0
sinϕdϕ ·

∫ 1

0
ρ2 dρ

= 2π · [− cosϕ]
π/4
0 ·

[
1

3
ρ3
]1
0

=
2

3
π · [− cos(π/4) + cos(0)]

=
2

3
π ·

[
−
√

2

2
+ 1

]
=
π

3

(
2−
√

2
)
.



(b): To compute the moment about the xy-plane we use the fact that z = ρ cosϕ in spherical
coordinates:

Mxy =

∫∫∫
E
z dV

=

∫∫∫
E
ρ cosϕρ2 sinϕdρdθdϕ

=

∫ 2π

0
dθ ·

∫ π/4

0
cosϕ sinϕdϕ ·

∫ 1

0
ρ3 dρ

=

∫ 2π

0
dθ ·

∫ π/4

0

1

2
sin(2ϕ) dϕ ·

∫ 1

0
ρ3 dρ

= 2π ·
[
−1

4
cos(2ϕ)

]π/4
0

·
[

1

4
ρ4
]1
0

=
π

8
· [− cos(π/2) + cos(0)]

=
π

8
· [−0 + 1]

=
π

8
.

Hence the center of mass is

(x̄, ȳ, z̄) =

(
Myz

m
,
Mxz

m
,
Mxy

m

)
=

(
0, 0,

π/8

π(2−
√

2)/3

)
= (0, 0, 0.64).

Problem 5. Volume of an Ellipsoid. Let a, b, c be positive.

(a) Use spherical coordinates to compute the volume of the unit sphere: x2 + y2 + z2 = 1.
(b) Use the change of variables (x, y, z) = (au, bv, cw) and part (a) to compute the volume

of the ellipsoid: (x/a)2 + (y/b)2 + (z/c)2 = 1.

(a): In spherical coordinates, the unit sphere is described by 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π and
0 ≤ ϕ ≤ π. Hence the volume is2∫∫∫

1 dV =

∫∫∫
ρ2 sinϕdρdθdϕ

=

∫ 2π

0
dθ ·

∫ π

0
sinϕdϕ ·

∫ 1

0
ρ2 dρ

= 2π · [− cosϕ]π0 ·
[

1

3
ρ3
]1
0

= 2π · [−(−1) + 1] ·
[

1

3

]
=

4

3
π.

2We could also quote the fact (proved in class) that a sphere of radius R has volume 4
3
πR3.



(b): Consider the change of variables (x, y, z) = (au, bv, cz). The Jacobian determinant is

∂(x, y, z)

∂(u, v, w)
= det

xu xv xw
yu yv yw
zu zv zw


= det

a 0 0
0 b 0
0 0 c


= a det

(
b 0
0 c

)
− 0 det

(
0 0
0 c

)
+ 0 det

(
0 b
0 0

)
= abc.

In other words, the change of variables (x, y, z) = (au, bv, cz) just scales all volumes by abc.
This makes sense because we are just scaling the x, y, z-coordinates by a, b, c, respectively.

The volume of the ellipsoid (x/a)2 + (y/b)2 + (z/c)2 = 1 is∫∫∫
(x/a)2+(y/b)2+(z/c)2≤1

1 dxdydz =

∫∫∫
u2+v2+w2≤1

abc dudvdw

= abc ·
∫∫∫

u2+v2+w2≤1

1 dudvdw

= abc · 4

3
π.

Remark: In general, if we scale any solid region by a, b, c in the x, y, z-directions, respectively,
then its volume gets multiplied by abc.


