Problem 1. Integration over a Rectangle. Let $f(x, y) = 6x^2y$ and consider the rectangle R where $-1 \le x \le 1$ and $0 \le y \le 4$.

- (a) Compute the integral $\iint_R f(x, y) dx dy$ by integrating over x first. (b) Compute the integral $\iint_R f(x, y) dx dy$ by integrating over y first. Observe that you get the same answer.

Problem 2. Polar Coordinates. Cartesian coordinates (x, y) and polar coordinates (r, θ) are related as follows:

$$\left\{\begin{array}{l} x = r\cos\theta\\ y = r\sin\theta\end{array}\right\} \quad \Longleftrightarrow \quad \left\{\begin{array}{l} r = \sqrt{x^2 + y^2}\\ \theta = \arctan(y/x)\end{array}\right\}$$

We will use the following notation¹ for the determinants of the Jacobian matrices:

$$\frac{\partial(x,y)}{\partial(r,\theta)} = \det \begin{pmatrix} x_r & x_\theta \\ y_r & y_\theta \end{pmatrix} \quad \text{and} \quad \frac{\partial(r,\theta)}{\partial(x,y)} = \det \begin{pmatrix} r_x & r_y \\ \theta_x & \theta_y \end{pmatrix}.$$

- (a) Compute $\partial(x, y) / \partial(r, \theta)$.
- (b) Compute $\partial(r,\theta)/\partial(x,y)$ and verify that

$$\frac{\partial(x,y)}{\partial(r,\theta)} \cdot \frac{\partial(r,\theta)}{\partial(x,y)} = 1.$$

Problem 3. Integration Over a Tetrahedron. Let *E* be the solid tetrahedron in \mathbb{R}^3 with vertices (0, 0, 0), (1, 0, 0), (0, 2, 0) and (0, 0, 3).

- (a) Find a parametrization for this region.
- (b) Use your parametrization to compute the volume of E.

Problem 4. Spherical Coordinates. Consider the solid region $E \subseteq \mathbb{R}^3$ that is inside the sphere $x^2 + y^2 + z^2 \le 1$ and above the cone $z^2 = x^2 + y^2$ with $z \ge 0$. Assume that this region has constant density 1 unit of mass per unit of volume.

- (a) Use spherical coordinates to compute the mass $m = \iiint_E 1 \, dV$.
- (b) Compute the moment about the xy-plane, $M_{xy} = \int \int \int E^{z} dV$, and use this to find the center of mass. [Hint: Because the shape has rotational symmetry around the z-axis we know that $M_{xz} = M_{yz} = 0.$]

Problem 5. Volume of an Ellipsoid. Let a, b, c be positive.

- (a) Use spherical coordinates to compute the volume of the unit sphere: $x^2 + y^2 + z^2 = 1$.
- (b) Use the change of variables (x, y, z) = (au, bv, cw) and part (a) to compute the volume of the ellipsoid: $(x/a)^2 + (y/b)^2 + (z/c)^2 = 1$.

¹Warning: Just as dy/dx is not a quotient of numbers, $\partial(x, y)/\partial(r, \theta)$ is not a quotient of numbers. It's just a notation for the determinant of the Jacobian matrix.