
Math 211 Summer 2022
Homework 3 Drew Armstrong

Problem 1. Tangent Line to an Ellipse. Let a, b > 0 and consider the ellilpse

ax2 + by2 = 1.

(a) Let P = (x0, y0) be a point on the ellipse. Show that the tangent line at P has equation

ax0x+ by0y = 1.

[Hint: Think of the ellipse as the level curve f(x, y) = 1 where f(x, y) = ax2 + by2.]
(b) Draw a picture of the ellipse and tangent line when a = 1, b = 3 and P = (1/2, 1/2).

(a): Recall, for a general curve f(x, y) = constant, the equation of the tangent plane at a
point (x0, y0) is

∇f(x0, y0) • 〈x− x0, y − y0〉 = 0

〈fx(x0, y0), fy(x0, y0)〉 • 〈x− x0, y − y0〉 = 0

fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) = 0.

In our case we can take f(x, y) = ax2 + by2, so that

∇f(x0, y0) = 〈2ax0, 2by0〉.

Hence the tangent line has equation

(2ax0)(x− x0) + (2by0)(y − y0) = 0.

This can be simplified by using the fact that (x0, y0) is a point on the curve, i.e., that ax20 +
by20 = 1. Then we have

(2ax0)(x− x0) + (2by0)(y − y0) = 0

ax0x+ by0y − (ax20 + by20) = 0

ax0x+ by0y − 1 = 0

ax0x+ by0y = 1.

How nice.

(b): Now let a = 1, b = 3 and (x0, y0) = (1/2, 1/2). The formula in part (a) tells us that the
equation of the tangent line to the ellipse x2 + 3y2 = 1 at the point (1/2, 1/2) is

(1)(1/2)x+ (3)(1/2)y = 1

x+ 3y = 2.

Here is a picture:



Problem 2. Multivariable Chain Rule Practice. Let f(x, y) be a function of x and y,
where x(r, θ) = r cos θ and y(r, θ) = r sin θ are functions of r and θ.

(a) Express fr and fθ in terms of r, θ, fx and fy.

(b) Express frr in terms of r, θ, fxx, fyy and fxy. [Hint: Use the formulas fxr = fxx
dx
dr +

fxy
dy
dr = fxx cos θ + fxy sin θ and fyr = fyx

dx
dr + fyy

dy
dr = fyx cos θ + fyy sin θ.]

(a): Recall the multivariable chain rule. Since f is a function of x and y, we have for any
other variable t that

df

dt
=
df

dx
· dx
dt

+
df

dy
· dy
dt
.

In our case we are interested in t = r and t = θ. Taking t = r gives

df

dr
=
df

dx
· dx
dr

+
df

dy
· dy
dr

df

dr
=
df

dx
· cos θ +

df

dy
· sin θ

fr = fx ˙cosθ + fy · sin θ,

and taking t = θ gives

df

dθ
=
df

dx
· dx
dθ

+
df

dy
· dy
dθ

df

dθ
=
df

dx
· (−r sin θ) +

df

dy
· r cos θ

fθ = fx · (−r sin θ) + fy · r cos θ.

Here we can think of fθ(r, θ), fx(r, θ), fy(r, θ) as some functions of r and θ, but we don’t know
what these functions are because we didn’t give a formula for f .



(b): Our goal is to compute frr, which is the derivative of fr with respect to r. There are
many ways to write this:1

frr = (fr)r =
d

dr

(
df

dr

)
=
d2f

dr2
.

We assume that θ is not a function of r, so that2

frr = (fr)r

= (fx · cos θ + fy · sin θ)r
= fxr · cos θ + fyr · sin θ.

Finally, we are asked to express fxr an fyr in terms of r, θ, fxx, fyy and fxy. We do this by
thinking of fx(x, y) as a function of x and y, and we use the multivariable chain rule:

fxr =
dfx
dr

=
dfx
dx
· dx
dr

+
dfx
dy
· dy
dr

= fxx · cos θ + fxy · sin θ.

Similarly, we have

fyr =
dfy
dr

=
dfy
dx
· dx
dr

+
dfy
dy
· dy
dr

= fyx · cos θ + fyy · sin θ.

Putting everything together gives

frr = (fxx · cos θ + fxy · sin θ) · cos θ + (fyx · cos θ + fyy · sin θ) · sin θ
= fxx · cos2 θ + fxy · (2 sin θ cos θ) + fyy · sin2 θ.

Wasn’t that fun?

Problem 3. Linear Approximation. Consider a parallelogram with side lengths a, b and
angle θ as follows:

(a) Find a formula for the area A(a, b, θ) in terms of a, b and θ.

1And we can also replace the symbol “d” with ∂ to indicate that there are other variables floating around.
2If θ were a function of r we would need to use the product rule. For example, we would have (fx · cos θ)r =

(fx)r · cos θ + fx · (cos θ)r = fxr · cos θ + fx · (− sin θ) · θr. In our case we have θr = 0.



(b) Suppose that we measure a, b, θ with the following uncertainties:

a = 2± 0.1 cm,

b = 1± 0.1 cm,

θ = 45± 1 degrees.

Use these measurements together with your formula from part (a) to estimate the area.

(a): The area of a parallelogram is “base times height”. In our case the height is b sin θ:

So the area is
A(a, b, θ) = (base)(height) = (a)(b sin θ) = ab sin θ.

(b): First we note that A(a, b, θ) ≈ (2)(1) sin(45◦) =
√

2 = 1.414. Next we will let dA, da, db
and dθ denote tiny changes in these quantities. According to the chain rule, these infinitesimal
quantities are related as follows:

dA =
dA

da
· da+

dA

db
· db+

dA

dθ
· dθ

= b sin θ · da+ a sin θ · db+ ab cos θ · dθ.
We are given that a = 2, b = 1, θ = 45◦, da = 0.1, db = 0.1 and dθ = 1◦. To keep the units
consistent, the quantity ab cos θ · dθ must have units of cm2, which means that dθ must be
measured in radians:3

dθ = 1◦ =
1◦

·
2π

360◦
=

π

180
= 0.01721420632.

Hence we obtain

dA = (1) sin(45◦)(0.1) + (2) sin(45◦)(0.1) + (2)(1) cos(45◦)(0.01721420632)

= 0.2364765983.

In summary, we have
A = 1.414± 0.236 cm2.

Problem 4. Constrained Optimization. Let f(x, y) = xy be a temperature distribution
in the plane. Suppose that you travel around the unit circle x2 + y2 = 1 with parametrization
r(t) = 〈cos t, sin t〉 from t = 0 to t = 2π.

3Quote from a webpage: For example, in the current SI, it is stated that angles are dimensionless based on
the definition that an angle in radians is arc length divided by radius, so the unit is surmised to be a derived
unit of one, or a dimensionless unit.



(a) Let T (t) = f(r(t)) be your temperature at time t. Compute T ′(t).
(b) Find all times t where T (t) is maximized or minimized. [Hint: Set T ′(t) = 0.]
(c) Use part (b) to find all points on the unit circle where the temperature is maximized

or minimized.
(d) Method of Lagrange Multipliers. Now we express the circle as g(x, y) = 1 where

g(x, y) = x2 +y2. Find all points on the circle where the vectors ∇g(x, y) and ∇f(x, y)
point in the same direction. [Hint: Let ∇f(x, y) = λ∇g(x, y) for some scalar λ. Use
this and the equation x2 + y2 = 1 to solve for x and y. It’s not as hard as it looks.]

(a): Our temperature at time t is

T (t) = f(r(t)) = f(cos t, sin t) = (cos t)(sin t) =
1

2
sin(2t),

hence our rate of change of temperature is

T ′(t) =
1

2
cos(2t) · 2 = cos(2t).

(b): From Calc I we know that local minima and maxima of T (t) occur when T ′(t), i.e., when4

cos(2t) = 0

2t = π/2 or 3π/2

t = π/4 or 3π/4 or 5π/4 or 7π/4.

To tell whether these are maxima or minima we use the Calc I second derivative test. Since
T ′′(t) = 2 sin(2t), we have

T ′′(π/4) = 2 > 0,

T ′′(3π/4) = −2 < 0,

T ′′(5π/4) = 2 > 0,

T ′′(7π/4) = −2 < 0.

It follows that t = π/4 and 5π/4 are local maxima, while t = 3π/4 and 7π/4 are local minima.

(c): The corresponding points are

r(π/4) = 〈1/
√

2, 1/
√

2〉,

r(3π/4) = 〈−1/
√

2, 1/
√

2〉,

r(5π/4) = 〈−1/
√

2,−1/
√

2〉,

r(7π/4) = 〈1/
√

2,−1/
√

2〉.

Here is a picture:

4In general, given an angle θ and positive integer n, the expression θ/n refers to n different angles. For
example, if 0 ≤ θ < 2π then θ/2 refers to the angles θ/2 and θ/2 + π.



(d): The method of Lagrange multipliers uses the fact (which is evident in the above picture)
that extreme values occur when a level curve of f(x, y) is tangent to the circle x2 + y2 = 1.
Equivalently, if we define g(x, y) = x2 + y2 then a level curve of f(x, y) is tangent to the curve
g(x, y) = 1 when their gradient vectors are parallel:

∇f(x, y) = λg(x, y)

〈y, x〉 = λ〈2x, 2y〉
〈y, x〉 = 〈λ2x, λ2y〉.

This gives two equations: y = λ2x and x = λ2y. Solving for λ gives λ = x/(2y) = y/(2x) and
hence 2x2 = 2y2, or x2 = y2. But we are only looking for points on the unit circle x2 +y2 = 1,
hence we must have

x2 + y2 = 1

x2 + x2 = 1

2x2 = 1

x2 = 1/2

x = ±1/
√

2.

This yields the same four points as in part (c), as it should.

Problem 5. Unconstrained Optimization. Let f(x, y) = x3 + 2xy − 4y2 − 6x be a
temperature distribution in the plane.

(a) Compute the gradient vector ∇f(x, y) and the Hessian determinant det(Hf).
(b) Find all critical points (x, y), i.e., all points where the gradient vector is zero:

∇f(x, y) = 〈0, 0〉.



(c) Use the “second derivative test” to determine whether each critical point is a local
maximum, local minimum, saddle point, or none of the above.

(a): We need to compute the derivatives fx, fy, fxx, fyy and fxy (which equals fyx):

fx = 3x2 + 2y − 6,

fy = 2x− 8y,

fxx = 6x,

fyy = −8,

fxy = 2,

fyx = 2.

Thus the gradient is

∇f(x, y) = 〈fx, fy〉 = 〈3x2 + 2y − 6, 2x− 8y〉,
the Hessian matrix is

Hf =

(
fxx fxy
fyx fyy

)
=

(
6x 2
2 −8

)
,

and the Hessian determinant is

det

(
6x 2
2 −8

)
= −48x− 4.

(b): To find the critical points we set

∇f(x, y) = 〈0, 0〉
〈3x2 + 2y − 6, 2x− 8y〉 = 〈0, 0〉,

which gives us two equations: {
3x2 + 2y − 6 = 0,

2x− 8y = 0.

Solving the second equation for y gives y = x/4, then substituting into the first equation gives

3x2 + 2(x/4)− 6 = 0

3x2 + x/2− 6 = 0

6x2 + x− 12 = 0,

which has solution

x =
−1±

√
289

12
=
−1± 17

12
=

4

3
and − 3

2
.

The corresponding y values are

y =
4/3

4
=

1

3
and y =

−3/2

4
= −3

8
,

hence we have two critical points:(
4

3
,
1

3

)
and

(
−3

2
,−3

8

)
.

(c): To determine whether these are maxima, minima, saddle points, or none of the above, we
use the Hessian determinant. For the point (4/3, 1/3) we have

det(Hf)(4/3, 1/3) = −48(4/3)− 4 = −68 < 0,



so this is a saddle point. For the point (−3/2,−3/8) we have

det(Hf)(−3/2,−3/8) = −48(−3/2)− 4 = 68 > 0,

so this is a local max or min. To determine which we can look at fxx or fyy.
5 Since

fxx(−3/2,−3/8) = 6(−3/2) = −9 < 0,

we conclude that (−3/2,−3/8) is a local maximum.6 Thus our scalar field has one saddle
point and one local maximum. Here is a picture of the graph:

5When det(Hf)(x0, y0) > 0 then fxx(x0, y0) and fyy(x0, y0) are both nonzero and have the same sign. The
textbook says to check the sign of fxx but you can equally well check the sign of fyy.

6In fact, since fyy = −8 is constantly negative, this scalar field can have no local minima anywhere.


