Problem 1. Tangent Line to an Ellipse. Let a, b > 0 and consider the ellipse

 $ax^2 + by^2 = 1.$

(a) Let $P = (x_0, y_0)$ be a point on the ellipse. Show that the tangent line at P has equation

 $ax_0x + by_0y = 1.$

[Hint: Think of the ellipse as the level curve f(x, y) = 1 where $f(x, y) = ax^2 + by^2$.] (b) Draw a picture of the ellipse and tangent line when a = 1, b = 3 and P = (1/2, 1/2).

Problem 2. Multivariable Chain Rule Practice. Let f(x, y) be a function of x and y, where $x(r, \theta) = r \cos \theta$ and $y(r, \theta) = r \sin \theta$ are functions of r and θ .

- (a) Express f_r and f_{θ} in terms of r, θ, f_x and f_y .
- (b) Express f_{rr} in terms of $r, \theta, f_{xx}, f_{yy}$ and f_{xy} . [Hint: Use the formulas $f_{xr} = f_{xx}\frac{dx}{dr} + f_{xy}\frac{dy}{dr} = f_{xx}\cos\theta + f_{xy}\sin\theta$ and $f_{yr} = f_{yx}\frac{dx}{dr} + f_{yy}\frac{dy}{dr} = f_{yx}\cos\theta + f_{yy}\sin\theta$.]

Problem 3. Linear Approximation. Consider a parallelogram with side lengths a, b and angle θ as follows:

- (a) Find a formula for the area $A(a, b, \theta)$ in terms of a, b and θ .
- (b) Suppose that we measure a, b, θ with the following uncertainties:

$$a = 2 \pm 0.1 \text{ cm},$$

$$b = 1 \pm 0.1 \text{ cm},$$

$$\theta = 45 \pm 1 \text{ degrees}.$$

Use these measurements together with your formula from part (a) to estimate the area.

Problem 4. Constrained Optimization. Let f(x, y) = xy be a temperature distribution in the plane. Suppose that you travel around the unit circle $x^2 + y^2 = 1$ with parametrization $\mathbf{r}(t) = \langle \cos t, \sin t \rangle$ from t = 0 to $t = 2\pi$.

- (a) Let $T(t) = f(\mathbf{r}(t))$ be your temperature at time t. Compute T'(t).
- (b) Find all times t where T(t) is maximized or minimized. [Hint: Set T'(t) = 0.]
- (c) Use part (b) to find all points on the unit circle where the temperature is maximized or minimized.
- (d) Method of Lagrange Multipliers. Now we express the circle as g(x, y) = 1 where $g(x, y) = x^2 + y^2$. Find all points on the circle where the vectors $\nabla g(x, y)$ and $\nabla f(x, y)$ point in the same direction. [Hint: Let $\nabla f(x, y) = \lambda \nabla g(x, y)$ for some scalar λ . Use this and the equation $x^2 + y^2 = 1$ to solve for x and y. It's not as hard as it looks.]

Problem 5. Unconstrained Optimization. Let $f(x,y) = x^3 + 2xy - 4y^2 - 6x$ be a temperature distribution in the plane.

- (a) Compute the gradient vector $\nabla f(x, y)$ and the Hessian determinant det(Hf).
- (b) Find all critical points (x, y), i.e., all points where the gradient vector is zero:

$$\nabla f(x,y) = \langle 0,0 \rangle.$$

(c) Use the "second derivative test" to determine whether each critical point is a local maximum, local minimum, saddle point, or none of the above.