Problem 1. Practice with the Chain Rule. Let f(x, y) be a function of x and y, where $x = s^2 + t^2$ and y = 2st are functions of s and t.

- (a) Express f_s and f_t in terms of s, t, f_x and f_y .
- (b) Express f_{ss} in terms of s, t, f_{xx} , f_{xy} (= f_{yx}) and f_{yy} . [Hint: As an intermediate step you will need to compute f_{xs} and f_{ys} . To do this, think of $f_x(x,y)$ and $f_y(x,y)$ as functions of (x, y) and use the chain rule as in part (a).]

Problem 2. Integration over a Rectangle. Find the volume between the surface $z = (x + y)^2$ and a general rectangle in the xy-plane: $a_1 \le x \le a_2$ and $b_1 \le y \le b_2$.

Problem 3. Integration over a Tetrahedron. Consider the solid tetrahedron with $x, y, z \ge 0$ and $x + 2y + 3z \le 6$. Suppose that this solid has a mass density of $\rho(x, y, z) = 1 + x$.

- (a) Compute the total mass $m = \iiint \rho(x, y, z) dV$.
- (b) Compute the moments about the three coordinate planes:

$$M_{yz} = \iiint x \rho \, dV,$$
$$M_{xz} = \iiint y \rho \, dV,$$
$$M_{xy} = \iiint z \rho \, dV.$$

(c) Find the center of mass of the solid tetrahedron.

[Hint: See the note on "parametrizing a tetrahedron".]

Problem 4. Cylindrical Coordinates. Consider the parabolic dome between the unit circle $x^2 + y^2 \leq 1$ and the surface $z = 1 - x^2 - y^2$. We will compute the center of mass, assuming that the density is constant: $\rho(x, y, z) = 1$.

- (a) Use cylindrical coordinates to compute the mass $m = \iiint 1 \, dV$. [Hint: Integrate over z first. We already did all of the work in class.]
- (b) Use cylindrical coordinates to compute the xy-moment $M_{xy} = \iiint z \, dV$.
- (c) Find the center of mass. [Hint: Because the shape has rotational symmetry around the z-axis you can assume that $M_{xz} = M_{yz} = 0$.]

Problem 5. Spherical Coordinates. Consider the solid region in \mathbb{R}^3 above the *xy*-plane, below the cone $z = \sqrt{x^2 + y^2}$ and inside the unit sphere $x^2 + y^2 + z^2 \leq 1$.

- (a) Use spherical coordinates to compute the volume of this region. [Hint: The region can be parametrized with ρ from 0 and 1 and θ from 0 to 2π . What about φ ?]
- (b) Compute the moment $M_{xy} = \iiint z dV$ and the center of mass. [Hint: Because the shape has rotational symmetry around the z-axis you can assume that $M_{xz} = M_{yz} = 0$.]