Problem 1. Parametrized Curves. Consider the following parametrized curves in \mathbb{R}^2 . Eliminate t to find an equation for each curve in terms of x and y. Draw the curves.

- (a) (x, y) = (6 4t, -1 + 3t)
- (b) $(x,y) = (e^t, e^{2t} + 1)$
- (c) $(x, y) = (1 + \cos t, 2 + \sin t)$

[Hint: The equations for (b) and (c) might involve x^2 and y^2 .]

Problem 2. A Parametrized Ellipse. The ellipse $(x/2)^2 + y^2 = 1$ can be parametrized:

$$(x,y) = (2\cos t, \sin t).$$

- (a) Draw the ellipse.
- (b) Compute the velocity and the speed of the parametrization.
- (c) Find the equation of the tangent line to the ellipse at the point $(\sqrt{2}, \sqrt{2}/2)$. [Hint: This is the point corresponding to $t = \pi/4$. Use the velocity vector from (b) to find the slope of the tangent line. Then use the point-slope equation.]
- (d) Write down an integral for the perimeter of the ellipse, and solve it using a computer. [Warning: This integral **cannot** be solved exactly using any of the standard functions.]

Problem 3. A Triangle in Space. Consider the following points in \mathbb{R}^3 :

$$P = (1, 1, 0), \quad Q = (1, 0, 2), \quad R = (1, 2, 3).$$

- (a) Find the coordinates of the three side vectors $\mathbf{u} = \vec{PQ}, \mathbf{v} = \vec{QR}, \mathbf{w} = \vec{PR}$.
- (b) Use the length formula to compute the three side lengths $\|\mathbf{u}\|, \|\mathbf{v}\|, \|\mathbf{w}\|$.
- (c) Use the dot product to compute the three angles of the triangle.

Problem 4. Some Vector Arithmetic. Let \mathbf{u} and \mathbf{v} be any two vectors, living in 527dimensional space. Use the rules of vector arithmetic (pages 112 and 147) to show that

$$\|\mathbf{u} - \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2(\mathbf{u} \bullet \mathbf{v}).$$

[Hint: Start with $\|\mathbf{u} - \mathbf{v}\|^2 = (\mathbf{u} - \mathbf{v}) \bullet (\mathbf{u} - \mathbf{v})$. Now use FOIL and simplify the result.]

Problem 5. Equations of Lines and Planes. The equation of the line in \mathbb{R}^2 that contains the point (x_0, y_0) and is perpendicular to the vector $\mathbf{n} = \langle a, b \rangle$ is

$$a(x - x_0) + b(y - y_0) = 0.$$

The equation of the plane in \mathbb{R}^3 that contains the point (x_0, y_0, z_0) and is perpendicular to the vector $\mathbf{n} = \langle a, b, c \rangle$ is

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0.$$

- (a) Find the equation of the line containing (-1, 2) and perpendicular to (3, 1).
- (b) Find the equation of the plane containing (1,0,0) and perpendicular to (1,3,-1).
- (c) Find the equation of the plane containing the points P, Q, R from Problem 3. [Hint: You can let (x_0, y_0, z_0) be any of the three points, say $(x_0, y_0, z_0) = P = (1, 1, 0)$. To get a vector $\mathbf{n} = \langle a, b, c \rangle$ perpendicular to the plane, let \mathbf{n} be the cross product of any two vectors in the plane, say $\mathbf{n} = \mathbf{u} \times \mathbf{v}$.]