Math 211 Fall 2019
Exam 2 Drew Armstrong

There are 6 pages. each worth 6 points. for a total of 36 points. This is a closed book test.
No electronic devices are allowed. Show your work for full credit.

Problem 1. Consider the function f(z,y, z) = zyz?.

(a) Compute the gradient vector Vf at the point (3,2,1).
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(b) Find the equation of the tangent plane to the surface f(z,y, z) = 6 at the point (3,2, 1).

T5(321) e (X -43,217 )
2 (-3 + R(9-2) + 1231 = O

(¢) Compute the rate of change of f at the point (3,2, 1) in the direction of
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Problem 2. Consider the function f(z,y) = 2%y — 2 — ¢

(a) This function has three critical points. Find them.
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(b) Use the second derivative test to determine whether each critical point is a local max-
imum, a local minimum, or a saddle point.

Fax = g1 \ Hi{y-1) — “4x?
- J(.- : - '( - X .

FY‘:} = ij = 2x Q

~

(6,0 = D:-4Y>0 & frax = =2 < O

LocAL MA X

(Y = DroEso

SADDPLIE PoINTS |



Problem 3. We will use Lagrange multipliers to optimize the function f(z,y,z) =x+y+ 2
subject to the constraint g(z,y, z) = 2 + 2y? + 322 = 1.

(a) Use the vector equation Vf = AVg to show that (z,y, z) = (z,2/2,1/3).
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(b) Substitute this into the equation g(z,y,z) = 1 to obtain values for (z,y, 2).
PA L A
Ly 31
L
Xl AL 3 X

“ i
kS
ot =]
g3 R

, QU
Qxik %kq”r 2\( - G

A
«X 6(3/4 U’zW“jﬂ S {91

(¢) Finally. compute the maximum and minimum values of f assuming that g = 1.
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Problem 4. Let D be the region between the curves y = 22 and y = /T, where 0 < z < 1.

(a) Draw a picture of the region.

(b) Write down a parametrization for this region.
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(c) Use your parametrization from part (b) to compute the integral [[,ydA.
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Problem 5. Consider the following double integral in Cartesian coordinates:
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(a) Rewrite this integral in polar coordinates.
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(b) Use your answer from part (a) to compute the integral.
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Problem 6. Let E be the solid region between the cylinders z2 + y? =1 and 22 + y? = 4,
and between the planes z =0 and z = 1.

(a) Write down a parametrization for this region using cylindrical coordinates.
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(b) Use your parametrization from part (a) to compute the integral [f[p zdV.
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