There are 6 pages, each worth 6 points, for a total of 36 points. This is a closed book test. No electronic devices are allowed. Show your work for full credit.

Problem 1. Consider the function $f(x, y, z) = xyz^2$.

(a) Compute the gradient vector ∇f at the point (3,2,1).

$$\nabla f = \langle yz^2, \chi z^2, 2 \times 5 \rangle$$

 $\nabla f(3,2,1) = \langle 2, 3, 12 \rangle$

(b) Find the equation of the tangent plane to the surface f(x, y, z) = 6 at the point (3, 2, 1).

$$\nabla f(3,2,1) \circ (\vec{x} - (3,2,1)) = 0$$

$$2(x-3) + 3(y-2) + 12(z-1) = 0$$

(c) Compute the rate of change of f at the point (3, 2, 1) in the direction of $\left\langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\rangle$.

Problem 2. Consider the function $f(x,y) = x^2y - x^2 - y^2$.

(a) This function has three critical points. Find them.

$$f_{x} = 2xy - 2x = 2x(y-1) = 0$$
 $\Rightarrow x = 0 \text{ or } y = 1$
 $f_{y} = x^{2} - 2y = 0 \Rightarrow x^{2} = 2y$

If $x = 0$ then $y = 0$.

If $y = 1$ then $x = \pm \sqrt{2}$.

Critical Points: $(0,0)$, $(\pm \sqrt{2},1)$, $(-\sqrt{2},1)$

(b) Use the second derivative test to determine whether each critical point is a local maximum, a local minimum, or a saddle point.

$$f_{xx} = 2(y-1)$$

 $f_{yy} = -2$
 $f_{xy} = f_{yx} = 2x$
 $D = -4(y-1) - 4x^{2}$

$$(0,0) \Rightarrow D=4>0 & f_{xx}=-2<0$$
LOCAL MAX

Problem 3. We will use Lagrange multipliers to optimize the function f(x, y, z) = x + y + z subject to the constraint $g(x, y, z) = x^2 + 2y^2 + 3z^2 = 1$.

(a) Use the vector equation $\nabla f = \lambda \nabla g$ to show that (x, y, z) = (x, x/2, x/3).

$$\langle 1,1,1\rangle = \chi \langle 2\chi, 4y, 62\rangle$$

$$\begin{cases} 1 = \chi 2\chi \\ 1 = \chi 4y \end{cases} \Rightarrow \chi 2\chi = \chi 4y = \chi 6z$$

$$\chi = 2y = 3z$$

$$\Rightarrow \chi = 2y = 3z$$

$$\Rightarrow \chi = 2y = 3z$$

(b) Substitute this into the equation g(x, y, z) = 1 to obtain values for (x, y, z).

$$x^{2} + 2y^{2} + 3z^{2} = 1$$

$$x^{2} + 2x^{2} + 3x^{2} = 1$$

$$x^{2} + x^{2} + x^{2} + x^{3} = 1$$

$$(x^{2} + 3x^{2} + 2x^{2} = 6)$$

$$11x^{2} = 6$$

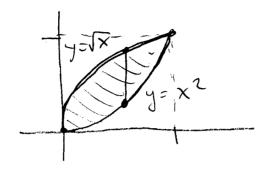
$$x = \pm \sqrt{6/11}, y = \pm \frac{1}{2}\sqrt{6/11}, z = \pm \frac{1}{3}\sqrt{6/11}$$

(c) Finally, compute the maximum and minimum values of f assuming that g = 1.

MIN:
$$F = -\frac{1}{5} - \frac{1}{2} \sqrt{\frac{6}{11}} - \frac{1}{3} \sqrt{\frac{6}{11}}$$

Problem 4. Let D be the region between the curves $y = x^2$ and $y = \sqrt{x}$, where $0 \le x \le 1$.

(a) Draw a picture of the region.



(b) Write down a parametrization for this region.

$$0 \le x \le 1$$

$$x^2 \le y \le \sqrt{x}$$

(c) Use your parametrization from part (b) to compute the integral $\iint_D y \, dA$.

$$\int_{0}^{1} \int_{x^{2}}^{x} y \, dy \, dx = \int_{0}^{1} \left[\frac{1}{2}y^{2}\right]_{x^{2}}^{x} dx$$

$$= \int_{0}^{1} \frac{1}{2} \left(x - x^{4} \right) dx = \left[\frac{1}{2} \left(\frac{x^{2}}{2} - \frac{x^{5}}{5} \right) \right]_{0}^{1}$$

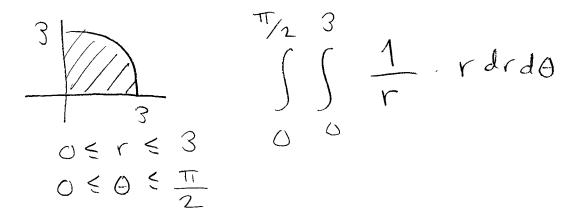
$$= \frac{1}{2} \left(\frac{1}{2} - \frac{1}{5} \right) = \frac{1}{2} \frac{3}{10} = \frac{3}{20}$$

$$=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{5}\right)=\frac{1}{2}\frac{3}{10}=\frac{3}{20}$$

Problem 5. Consider the following double integral in Cartesian coordinates:

$$\int_0^3 \int_0^{\sqrt{9-x^2}} \frac{1}{\sqrt{x^2 + y^2}} \, dy \, dx.$$

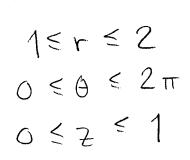
(a) Rewrite this integral in polar coordinates.

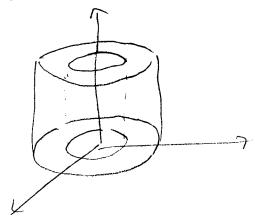


(b) Use your answer from part (a) to compute the integral.

$$\frac{11/2}{5}$$
 $\frac{3}{5}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{3}{5}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{1}{2}$ \frac

- **Problem 6.** Let E be the solid region between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$, and between the planes z = 0 and z = 1.
 - (a) Write down a parametrization for this region using cylindrical coordinates.





(b) Use your parametrization from part (a) to compute the integral $\iiint_E z \, dV$.

$$\int_{0}^{2\pi} \left| \frac{2r^{2}}{2} \right|^{2}$$

$$\int_{0}^{2\pi} \left| \frac{2\pi}{2} \right|^{2} d\theta dz = \int_{0}^{2\pi} \left| \frac{2\pi}{2} \right|^{2} d\theta dz$$

$$=\int \frac{2}{3} \cdot 2\pi d2$$

$$= \int \frac{2 \cdot 3 \cdot 2\pi}{2} dx = 3\pi \frac{2^{2}}{2} \Big|_{0}^{1} = \frac{3\pi}{2}$$