Math 211 Fall 2019
Exam 2 Sample Drew Armstrong

There are 6 pages, each worth 6 points, for a total of 36 points. This is a closed book test.
No electronic devices are allowed. Show your work for full credit.
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1. Based on Exercise 11.6.33. Consider the function f(z,y) = ye™*.

(a) Find a unit vector u so that the rate of change of Dy f is maximized at the point (0,0).
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(b) Find a unit vector u so that the rate of change D, f is maximized at the point (0,1).
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(c) Find the rate of change of f at the point (0,1) in the direction of v = (v/3/2,—1/2).
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2. Based on Exercise 11.7.15. Consider the function
fx,y) = 3z%y +¢° — 32% — 3y + 2.

Find the critical points and use the second derivative test to classify them local maximal, local
minima, or saddle points.
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3. Based on Exercise 11.8.7." We will use the method of Lagrange multipliers to maximize
the volume of a box V(z,y, z) = zyz subject to the constraint g(x,y,z = z? +2y%+ 322 = 6.

(a) Use the vector equation VV = AVg to show that (z,y, 2) = (z, +z/v2, +z/V/3).
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(b) Substitute this into the constraint equation g(z,y, 2) = 6 to obtain values for (z, v, z).

(c) Plug in these values into V(z,y, z) to obtain the maximum volume.
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4. Based on Exercise 12.2.17. Let D be the triangular region with vertices (0, 1), (1,2), (4,1).

(a) Draw a picture of the region.
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(b) Write down a parametrization for this region.
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(c) Use your parametrization from part (b) to compute the integral [/ b y*dA.
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5. Based on Exercise 12.3.13. The following integral computes the volume of the solid
below the cone z = \/x2 + y? and above the disk 2 +y?2 <4
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(a) Rewrite this integral in polar coordinates.
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(b) Solve your integral from part (a) to compute the volume of the solid.
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6. Based on Example 12.6.4. A circular cone with radius R and height&has the following
parametrization in cylindrical coordinates:

Compute th voume o thecone. (2
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