Fall 2019 Drew Armstrong

Math 211 Exam 2 Sample

There are 6 pages, each worth 6 points, for a total of 36 points. This is a closed book test. No electronic devices are allowed. Show your work for full credit.

- 1. Based on Exercise 11.6.33. Consider the function $f(x,y) = ye^{-x}$.
 - (a) Find a unit vector \mathbf{u} so that the rate of change of $D_{\mathbf{u}}f$ is maximized at the point (0,0).

$$\nabla f = \langle -ye^{-x}, e^{-x} \rangle$$

 $\nabla f(0,0) = \langle 0, 1 \rangle$
 $\vec{u} = \langle 0, 1 \rangle$

(b) Find a unit vector \mathbf{u} so that the rate of change $D_{\mathbf{u}}f$ is maximized at the point (0,1).

(c) Find the rate of change of f at the point (0,1) in the direction of $\mathbf{v}=\langle\sqrt{3}/2,-1/2\rangle$.

Since
$$\sqrt{15}$$
 a unit vector

$$D \neq f(0,1) = \nabla f(0,1) \cdot \vec{\nabla}$$

$$= \langle -1,1 \rangle \cdot \langle \sqrt{3}/2, -1/2 \rangle$$

$$= -\frac{\sqrt{3}}{2} - \frac{1}{2} = -\frac{\sqrt{3}-1}{2}$$

2. Based on Exercise 11.7.15. Consider the function

$$f(x,y) = 3x^2y + y^3 - 3x^2 - 3y^2 + 2.$$

Find the critical points and use the second derivative test to classify them local maximal, local minima, or saddle points.

①
$$\int f_{x} = 6xy - 6x = 0 \implies 6x(y-1) = 0$$
②
$$\int f_{y} = 3x^{2} + 3y^{2} - 6y = 0$$

① Says
$$x = 0$$
 or $y = 1$.
IF $x = 0$ then ② says $3y(y-2) = 0$
So $y = 0$ or $y = 2$
If $y = 1$ then ② says $x = \pm 1$.

$$f_{xx} = 6y - 6$$
 $f_{xy} = 6x$ $D = f_{xx} f_{22} - f_{xy}^2$
 $f_{yy} = 6y - 6$ $f_{yx} = 6x$ $= (6y - 6)^2 = (6x)^2$

$$D(0,0) = 36 > 0$$
 and $f_{xx}(0,0) = -6 < 0$

$$\Rightarrow (0,0) \text{ is local MAX}$$

$$D(0,2) = 3670$$
 and $f_{xx}(0,2) = +670$
 $\Rightarrow (0,2)$ Local MIN.

- 3. Based on Exercise 11.8.7. We will use the method of Lagrange multipliers to maximize the volume of a box V(x, y, z) = xyz subject to the constraint $g(x, y, z) = x^2 + 2y^2 + 3z^2 = 6$.
 - (a) Use the vector equation $\nabla V = \lambda \nabla g$ to show that $(x, y, z) = (x, \pm x/\sqrt{2}, \pm x/\sqrt{3})$.

$$\nabla V = \langle y_{\overline{z}}, \chi_{\overline{z}}, \chi_{\overline{y}} \rangle$$

$$\nabla y_{\overline{z}} = \chi_{2x}$$

$$\nabla y_{\overline{z}} = \chi_{2x}$$

$$\chi_{\overline{z}} = \chi_{4y}$$

$$\chi_{\overline{z}} = \chi_{4y}$$

$$\chi_{\overline{y}} = \chi_{6z}$$

(b) Substitute this into the constraint equation g(x, y, z) = 6 to obtain values for (x, y, z).

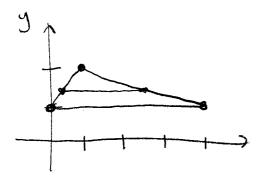
$$g(x, y, z) = 6$$

 $g(x, y, z) = 6$
 $g(x, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}) = 6$
 $g(x, y, z) = 6$
 $g(x, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}) = 6$
 $g(x, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}) = 6$

(c) Plug in these values into V(x, y, z) to obtain the maximum volume.

$$V = (\pm \sqrt{2})(\pm 1)(\pm \frac{\sqrt{2}}{\sqrt{3}}) = \pm \frac{2}{\sqrt{3}}$$

- **4.** Based on Exercise 12.2.17. Let D be the triangular region with vertices (0,1), (1,2), (4,1).
 - (a) Draw a picture of the region.



left line:
$$y = x + 1$$

right line:
$$y = -\frac{x}{3} + \frac{7}{3}$$

(b) Write down a parametrization for this region.

$$1 \le y \le 2$$

$$y-1 \le x \le 7-3y$$

(c) Use your parametrization from part (b) to compute the integral $\iint_D y^2 dA$.

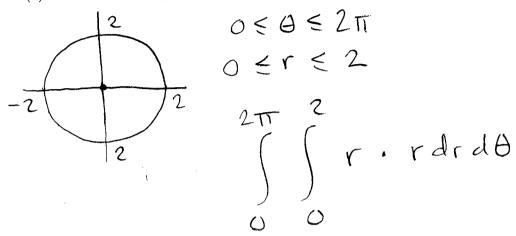
$$= \int_{1}^{2} 8y^{2} - 4y^{3} dy = \left[\frac{8}{3}y^{3} - y^{4} \right]_{1}^{2}$$

$$= \left(\frac{64}{3} - 16 \right) - \left(\frac{8}{3} - 1 \right) = \frac{11}{3}$$

5. Based on Exercise 12.3.13. The following integral computes the volume of the solid below the cone $z = \sqrt{x^2 + y^2}$ and above the disk $x^2 + y^2 \le 4$:

$$\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \sqrt{x^2 + y^2} \, dy \, dx.$$

(a) Rewrite this integral in polar coordinates.



(b) Solve your integral from part (a) to compute the volume of the solid.

$$= \int_{0}^{2\pi} \int_{0}^{2} dr d\theta$$

$$= \int_{0}^{2\pi} \left(\frac{2^3}{3} - \frac{0^3}{3} \right) d\theta$$

$$= 2\pi \cdot \frac{8}{3}$$

6. Based on Example 12.6.4. A circular cone with radius R and height has the following parametrization in cylindrical coordinates:

$$E = \{(r, \theta, z) : 0 \le r \le R, 0 \le \theta \le 2\pi, r \le z \le R\}.$$

$$= \begin{cases} 2\pi R R R \\ S r dz dr d\theta \\ S r dz dr d\theta \end{cases}$$

$$= \begin{cases} 2\pi R \\ \Gamma(R-r) & \text{or} d\theta \end{cases}$$

$$= \int_{0}^{2\pi} \left(\frac{R^{3}}{2} - \frac{R^{3}}{3}\right) d\theta = 2\pi \left(\frac{1}{6}R^{3}\right)$$

$$= \frac{\pi R^3}{3}$$