Intro to Linear Algebra \ Summer 2017
Quiz 3 Drew Armstrong

Problem 1. Consider the following system of linear equations:

z + 2y + 0= -1
T+ 2y + z= 0
x4+ 2y + 2z = 1

(a) Put the system in reduced row echelon form (RREF)
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(b) Use your answer from part (a) to write down the complete solution.
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Problem 2. Consider the same system of equations again: 4
x4+ 2y + 0= -1 Q
T+ 2y + z = 0 @
T+ 2+ 22 = 1 @

(a) The three linear equations represent three planes living in 3D. Tell me three vectors
that are perpendicular to these three planes.
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(b) Fill in the blanks. Let Fy, Es, E3 represent the three linear equations. The reason that
the solution is a line (instead of a point) is because there exists a non-trivial relation
among the equations:

E3="'"l -FEy+ Q‘* - Eo

(c) Fill in the blanks. The equation from part (b) has the following consequences:

If the point (z,y, z) satisfies the first and second equations then it also
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Geometrically, the intersection of the first and second planes is contained in
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