
Math 210 F Spring 2016
Study Sheet for the Final Drew Armstrong

After spending all semester emphasizing conceptual understanding over memorization, here
is a list of formulas you can memorize for the final exam. Sorry there are no pictures; those
take a long time to make on the computer.

Points: Let Rn denote the set of n× 1 matrices of real numbers:

~x =


x1
x2
...
xn

 .

We call these “points” in n-dimensional Cartesian space.

Vectors: We will also think of a point ~x in Rn as a directed line segment (a “vector”) with

its tail at the origin ~0 and its head at the point ~x. This idea is subtle because we are allowed
to pick up the arrow and move it as long as we don’t change its length or direction.

Parallolgram Law: Consider two points ~x and ~y in Rn. The points ~0, ~x, ~y form three vertices
of a 2D parallelogram living in Rn. The fourth vertex of the parallogram is

~x+ ~y =


x1
x2
...
xn

+


y1
y2
...
yn

 :=


x1 + y1
x2 + y2

...
xn + yn

 .

Subtraction of Vectors: Consider two points ~x, ~y in Rn. The vector with tail at ~x and head
at ~y is represented by the point

~y − ~x =


y1
y2
...
yn

−

x1
x2
...
xn

 :=


y1 − x1
y2 − x2

...
yn − xn

 .

Vector Arithmetic: Consider vectors ~x, ~y, ~z in Rn and numbers a, b in R. Then we have

– ~x+ ~y = ~y + ~x,
– ~x+ (~y + ~z) = (~x+ ~y) + ~z,
– a(~x+ ~y) = a~x+ a~y,
– (a+ b)~x = a~x+ b~x.

Dot Product: Given vectors ~x, ~y in Rn, we define their dot product as the number

~x • ~y =


x1
x2
...
xn

 •

y1
y2
...
yn

 := x1y1 + x2y2 + · · ·+ xnyn.

More Vector Arithmetic: For all vectors ~x, ~y, ~z in Rn and numbers a in R we have



– ~x • ~y = ~y • ~x,
– ~x • (~y + a~z) = ~x • ~y + a~x • ~z.

Pythagorean Theorem: Given a vector ~x in Rn its “length” ‖~x‖ is the non-negative number
defined by

‖~x‖2 = ~x • ~x = x21 + x22 + · · ·x2n.

Law of Cosines: Consider two vectors ~x, ~y in Rn. These vectors together with their difference
~y − ~x form the three sides of a 2D triangle in Rn. By applying the formulas above we get

‖~y − ~x‖2 = ‖~x‖2 + ‖~y‖2 − 2(~x • ~y).

On the other hand, the classical Law of Cosines for triangles tells us that

‖~y − ~x‖2 = ‖~x‖2 + ‖~y‖2 − 2‖~x‖‖~y‖ cos θ,

where θ is the angle between the vectors ~x and ~y. Then comparing the two equations gives

~x • ~y = ‖~x‖‖~y‖ cos θ.

In particular, this tells us that ~x ⊥ ~y if and only if ~x • ~y = 0.

Lines in R2: A line in the plane can be written in parametric form as(
x
y

)
=

(
x0
y0

)
+ t

(
u
v

)
.

This is the line containing the point (x0, y0) and parallel to the vector (u, v). Or it can be
expressed by an equation

ax+ by = c

where (a, b) is some vector perpendicular (“normal”) to the line. This line contains the origin

(0, 0) if and only if c = 0. In general, the line has minimum distance c/
√
a2 + b2 from the

origin.

Planes in R3: A plane in 3-dimensional space can be written in parametric form asxy
z

 =

x0y0
z0

+ s

u1v1
w1

+ t

u2v2
w2

 .

This is the plane containing the point (x0, y0, z0) and spanned by the vectors (u1, v1, w1) and
(u2, v2, w2). Or it can be expressed by an equation

ax+ by + cz = d

where (a, b, c) is some vector perpendicular (“normal”) to the plane. This plane contains the

origin (0, 0, 0) if and only if d = 0. In general, the plane has minimum distance d/
√
a2 + b2 + c2

from the origin.

Lines in R3: A line in 3-dimensional space can be written in parametric form asxy
z

 =

x0y0
z0

+ t

uv
w

 .

This is the line containing the point (x0, y0, z0) and parallel to the vector (u, v, w). However,
a line in 3D can not be defined by a single equation. It can be defined as the solution of a
system of two linear equations in three unknowns. Geometrically, this expresses the line as an
intersection of two planes.



Systems of Linear Equations: A system of m linear equations in n unknowns has the
following form: 

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm

Alternatively, we can write it as a matrix equation:
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



x1
x2
...
xn

 =


b1
b2
...
bm

 .

And we usually shorten it to this:

A~x = ~b.

The set of solutions to this system form a flat d-dimensional shape (called a “d-plane”) living
in Rn. Most likely we will have d = n−m = # variables − # equations.

Gaussian Elimination: A system of linear equations A~x = ~b can be solved by putting the
system in Reduced Row Echelon Form (RREF) by Gaussian elimination. Each non-pivot
column in the RREF leads to a free variable, so if there are d non-pivot columns in the RREF
the solution will be a d-plane. Each non-pivot column also tells us an explicit non-trivial
relation among the columns of A. We call d the “nullity” of A, and write d = null(A).

Fundamental Theorem I: The set of vectors of the form A~x is called the column space of
the matrix A, because it consists of all linear combinations of the columns. If A has shape
m×n then the column space is a subspace of Rm. The dimension of the column space is called
the “rank” of A, written rank(A). It is equal to the number of pivot columns in the RREF.
Since the total number of columns in the RREF is n, we obtain

rank(A) + null(A) = n.

Fundamental Theorem II: Let A have shape m× n. Many times have I told you that the
equation AT~e = ~0 means that the vector ~e is perpendicular to all of the columns of A. In
other words, the nullspace of AT is the “orthogonal complement” to the column space of A.
It follows from this that their dimensions add to m, i.e., null(AT ) + rank(A) = m. Combining
this with the Fundamental Theorem above gives the following surprising equation:

rank(AT ) = rank(A).

In other words, the row space and the column space of A have the same dimension!

Matrix Multiplication: Let A have shape ` ×m and let B have shape m × n. Then the
matrix AB exists and has shape `× n. It is defined by requiring that the following equation
holds for all ~x in Rn:

(AB)~x = A(B~x).

However, if we want to actually compute the matrix AB we use the following rules:

– ((i, j)-th entry of AB) = (i-th row of A)(j-th column of B)

– (i-th row of AB) = (i-th row of A) B

– (j-th column of AB) = A (j-th column of B).



Inverse Matrices: Let A have shape m × n. We say that B is an inverse matrix of A if
AB = Im and BA = In. But this is impossible unless m = n. (Reason: The matrix B has
shape n×m. If n < m then RREF(B) has a non-pivot column so B has a non-trivial column
relation. But then since A(j-th column B)=(j-th column Im) we conclude that Im has a
non-trivial column relation, which is impossible. If m < n then A has a non-trivial column
relation and then the equation BA = In tells us that In has a non-trivial column relation,
which is impossible.) If A has shape n × n then it might have an inverse. To compute the
inverse we do this trick:

(A|I)
RREF−−−−→

(
I|A−1

)
If the trick doesn’t work (because A had some non-trivial row relation or column relation)
then we conclude that A has no inverse.

Uniqueness of Inverses: Suppose that we have AB = I and CA = I. It follows that

C = CI = C(AB) = (CA)B = IB = B.

Hence if A has an inverse matrix, this matrix is unique. We give it the special name A−1.

Matrix Arithmetic: Consider matrices A,B,C and numbers x, y. The following formulas
hold as long as the respective matrices exist:

– A+B = B +A

– A+ (B + C) = (A+B) + C

– A(BC) = (AB)C

– (x+ y)A = xA+ yA

– x(AB) = (xA)B = A(xB)

– A(B + xC) = AB + xAC

– (A+ xB)C = AC + xBC

– (A+B)T = AT +BT

– (AB)T = BTAT

– (AB)−1 = B−1A−1

– (AT )−1 = (A−1)T .

WARNING: The following two formulas are NOT generally true:

– AB = BA.
– (A+B)−1 = A−1 +B−1.

Solutions of a Linear System are Flat: Suppose we have two solutions of a linear system:

A~x = ~b and A~y = ~b. Then for any number t we have

A(t~x+ (1− t)~y) = tA~x+ (1− t)A~y = t~b+ (1− t)~b = ~b.

This implies that every point of the line t~x + (1 − t)~y is also a solution. This is what I
mean when I say that the solutions of a linear system form a d-plane. Geometrically: If m
hyperplanes in n-dimensional space meet at two points ~x, ~y then they also meet at the whole
line t~x+ (1− t)~y.



Orthogonal Projection: Let A be an m × n matrix such that the inverse (ATA)−1 exists.
Then the m×m matrix

P = A(ATA)−1AT

satisfies the properties P 2 = P and P T = P . Geometrically, this matrix projects any point
orthogonally onto the column space of A. Special case: If A = ~a is a column vector then we
have

P = ~a(~aT~a)−1~aT =
1

~aT~a
~a~aT =

1

‖~a‖2
~a~aT .

This is the matrix that projects onto the line t~a. If Q is the matrix that projects onto the
nullspace of AT (which consists of all vectors perpendicular to the column space of A) then
we have

P +Q = Im.

Least Squares Regression: Suppose that the linear system A~x = ~b has no solution. This

means that the point ~b is not in the column space of A. Gauss’ idea was to project the point
~b orthogonally into the column space of A to get P~b and then to solve the equation Ax̂ = P~b
instead. This new “normal equation” is usually written as

ATAx̂ = AT~b.

The most common application of this equation is to find the line that is a best fit for a given
set of data points.

Eigenvectors and Eigenvalues: Let A be an n× n matrix. We say that a nonzero vector
~x 6= ~0 is an eigenvector of A if there exists a number λ such that

A~x = λ~x.

In this case we say that ~x is an eigenvector with eigenvalue λ, or a λ-eigenvector. This equation
can be rewritten as

(A− λIn)~x = ~0.

Note that this equation has a non-zero solution (i.e., λ is an eigenvalue) precisely when the
matrix (A− λIn) is not invertible. In the case of a 2× 2 matrix we can express this as the
characteristic equation

0 = det

(
a− λ b
c d− λ

)
= λ2 − (a+ d)λ+ (ad− bc).

Spectral Analysis: Suppose you have a linear recurrence relation defined by ~vn+1 = A~vn.
If ~v0 is the initial condition then the n-th state vector is given by

~vn = An~v0.

To solve this equation we first find the eigenvalues of A via the characteristic equation and
then we find some corresponding eigenvectors. Suppose we find

A~x = λ~x and A~y = µ~y.

Then we try to express our initial condition in terms of eigenvectors: ~v0 = a~x + b~y. If we’re
successful (i.e., if the matrix A has enough eigenvectors) then we can use this to obtain a
“closed form” solution to the recurrence:

~vn = An~v0 = An(a~x+ b~y)

= aAn~x+ bAn~y

= aλn~x+ bµn~y.


