
Math 210 Fall 2020
Rules of Matrix Arithmetic Drew Armstrong

Let A be an ` ×m matrix (i.e., ` rows and m columns) and let B be an m′ × n matrix. If
m = m′ then we define the `× n product matrix AB by requiring that

(AB)x = A(Bx) for all x ∈ Rn.

If m 6= m′, i.e., if #(columns of A) 6= #(rows of B), then the product matrix is not defined.
We can compute the matrix AB with the following rules:

(ith row of AB) = (ith row of A)B,

(jth col of AB) = A(jth col of B),

(i, j entry of AB) = (ith row of A)(jth col of B).

Note that the product of a row (on the left) times a column (on the right) is just the dot
product. Furthermore, matrices of the same shape can be added componentwise and mul-
tiplied by scalars, just like vectors. Now let A,B,C be matrices and let s, t be scalars. Let
O denote a zero matrix of any shape and let I denote a (square) identity matrix. Then the
following rules hold (as long as the shapes match):

• A + B = B + A

• A + (B + C) = (A + B) + C

• A + O = A

• s(A + B) = sA + sB

• (s + t)A = sA + tA

• s(AB) = (sA)B = A(sB)

• A(BC) = (AB)C

• A(B + C) = AB + AC

• (A + B)C = AC + BC

• AO = O and OA = O

• AI = A and IA = A

Note that these rules include the rules of vector arithmetic as a special case because vectors
are n× 1 matrices and the dot product is a matrix product. Furthermore, the rules are easy
to memorize because they all look obvious. The only difference is that matrix multiplication
is not generally commutative:

AB 6= BA.

Next, if A has shape m× n then we define the n×m transpose matrix AT as follows:

(i, j entry of AT ) = (j, i entry of A).

This operations satisfies the following additional rules:

• (AT )T = A

• (sA)T = sAT

• (A + B)T = AT + BT



• (AB)T = BTAT

Maybe this last rule is a bit surprising? Let A be ` ×m and let B be m × n, so that AT is
m× ` and BT is n×m. Then the matrix ATBT is not defined unless ` = n. However, the
matrix BTAT is always defined and has the same shape as (AB)T . So it makes sense. One
important use of the matrix transpose is to express the dot product of vectors. If x,y ∈ Rn

are n× 1 column vectors then xTy is a 1× 1 scalar, which is just the dot product:

xTy = x • y.

Furthermore, since every 1× 1 matrix is equal to its own transpose we have xTy = (xTy)T =
yT (xT )T = yTx. [Remark: On the other hand, xyT and yxT are n× n matrices.]

Finally, we consider matrix inversion. If A and B are square matrices of the same size then
we say that A = B−1 and B = A−1 (i.e., the matrices are inverses of each other) when

AB = I = BA.

[Subtle Remark: In fact we only need to check one of the identities AB = I and BA = I, since
each implies the other. But this fact is quite difficult to prove.] If Ax = 0 for some x 6= 0
then the matrix A−1 does not exist. Otherwise, it does exist, and we may compute it using
Gaussian elimination: (

A I
) RREF (

I A−1
)
.

Now let A and B be any square matrices of the same size (not necessarily inverses of each
other) and suppose that A−1 and B−1 both exist. Then the following additional rules hold:

• (A−1)−1 = A

• (sA)−1 = 1
sA
−1

• (AT )−1 = (A−1)T

• (AB)−1 = B−1A−1

Proof. The first rule is obvious. For the second we use the identity (sA)(tB) = (st)(AB):

(sA)

(
1

s
A−1

)
=

(
s · 1

s

)
(AA−1) = AA−1 = I.

For the third rule we use the identities IT = I and (AB)T = BTAT :

AA−1 = I

(AA−1)T = IT

(A−1)TAT = I.

For the fourth rule we use the associativity of multiplication:

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I.

�

These rules show us how inversion interacts with scalar multiplication, transposition and
matrix multiplication. Warning: Inversion and addition do not play well together:

(A + B)−1 = nothing good.

And that’s it. I encourage you to memorize these rules.


