Math 210 Fall 2020
Rules of Matrix Arithmetic Drew Armstrong

Let A be an ¢ x m matrix (i.e., £ rows and m columns) and let B be an m’ x n matrix. If
m = m/ then we define the £ x n product matriz AB by requiring that

(AB)x = A(Bx) for all x € R".

If m # m/, i.e., if #(columns of A) # #(rows of B), then the product matrix is not defined.
We can compute the matrix AB with the following rules:

(ith row of AB) = (ith row of A)B,
(jth col of AB) = A(jth col of B),
(i,j entry of AB) = (ith row of A)(jth col of B).

Note that the product of a row (on the left) times a column (on the right) is just the dot
product. Furthermore, matrices of the same shape can be added componentwise and mul-
tiplied by scalars, just like vectors. Now let A, B, C be matrices and let s,t be scalars. Let
O denote a zero matrix of any shape and let I denote a (square) identity matrix. Then the
following rules hold (as long as the shapes match):

e A+B=B+A

e A+(B+(C)=(A+B)+C
e A+0=A

e s(A+B)=s5A+sB

o (s+t)A=sA+tA

e s(AB) = (sA)B = A(sB)
e A(BC)=(AB)C

e A(B+C)=AB+ AC
e (A+ B)C = AC+ BC
e AO=0and OA=0

e Al=Aand A=A

Note that these rules include the rules of vector arithmetic as a special case because vectors
are n X 1 matrices and the dot product is a matrix product. Furthermore, the rules are easy
to memorize because they all look obvious. The only difference is that matrix multiplication
is not generally commutative:
AB # BA.
Next, if A has shape m x n then we define the n x m transpose matriz AT as follows:
(i,7 entry of AT) = (4,4 entry of A).

This operations satisfies the following additional rules:

o (AT =4

o (sA)T =sAT

o (A+B)T =AT + BT



o (AB)T = BT AT

Maybe this last rule is a bit surprising? Let A be £ x m and let B be m x n, so that A7 is
m x ¢ and BT is n x m. Then the matrix AT BT is not defined unless ¢ = n. However, the
matrix BT AT is always defined and has the same shape as (AB)T. So it makes sense. One
important use of the matrix transpose is to express the dot product of vectors. If x,y € R"
are n x 1 column vectors then x”y is a 1 x 1 scalar, which is just the dot product:

xTy =xey.

Furthermore, since every 1 x 1 matrix is equal to its own transpose we have x’y = (xTy)T =
yI'(xT)T = y"x. [Remark: On the other hand, xy” and yx” are n x n matrices.]

Finally, we consider matrix inversion. If A and B are square matrices of the same size then
we say that A = B~! and B = A~! (i.e., the matrices are inverses of each other) when

AB =1= BA.

[Subtle Remark: In fact we only need to check one of the identities AB = I and BA = I, since
each implies the other. But this fact is quite difficult to prove.] If Ax = 0 for some x # 0
then the matrix A~! does not exist. Otherwise, it does exist, and we may compute it using
Gaussian elimination:

(A|T) «R/I\D‘/E\i (I]A1).
Now let A and B be any square matrices of the same size (not necessarily inverses of each
other) and suppose that A~ and B~! both exist. Then the following additional rules hold:
o (A H) =4
o (sA)7l = %A_l
° (AT)—I — (A—I)T
o (AB)"'=pB71A"!
Proof. The first rule is obvious. For the second we use the identity (sA)(tB) = (st)(AB):
(s4) (iA*) - <s - i) (AADy = AA' =T,
For the third rule we use the identities I7 = I and (AB)T = BT AT:

AAT =T
(AAHT =17
(A HTAT = 1.

For the fourth rule we use the associativity of multiplication:
(AB)(B'A™) = ABB A ' =ATA ' =447 = 1.
O

These rules show us how inversion interacts with scalar multiplication, transposition and
matrix multiplication. Warning: Inversion and addition do not play well together:

(A+ B)™! = nothing good.

And that’s it. I encourage you to memorize these rules.



