Math 210 Fall 2020
Homework 5 Drew Armstrong

Problem 1. Special Matrices. For any angle 6 we define the following matrices:

R, — (o8 6 —sind  — (cos 6 sinf P cos?0  cosfsinf
= \sin@ cosh )> "7 \sinf® —cosf)’ "% \cosfsin® sin?0 |-
(a) Describe what each matrix does geometrically.

a
(b) Compute the determinant of each matrix.
(c¢) For each matrix that is invertible, compute the inverse.

(a): The matrix Ry rotates counterclockwise by angle . The matrix Fy reflects across the
line with angle 6/2. [See the lecture notes for dicsussion.] The matrix Py projects onto the
line with angle 6. Indeed, the matrix that projects onto the line ta = t(cosf,sin 0) is

p_ 1 aal 1 <cos 0> (cosO sin6) < cos? 0 cos@sin@)

l|lal|? - cos2 6 + sin2 6 \sinf cos@sin @ sin? 6

(b): To save space we will write ¢ = cosf and s = sinf. Then the determinants are
det(Rg) = * + 5% =1,
det(Fy) = —c? — s*> = —1,
det(Py) = ?s*> — cses = 0.

Note that these determinants do not depend on the angle #. [Remark: It is a general phe-
nomenon that rotations have determinant 1, reflections have determinant —1 and projections
have determinant 0.

(c): Recall that a matrix is invertible if and only if its determinant is not zero. Thus P is not
invertible. The inverses of Ry and Fjy are given by

=y ()= (50
5=y ()= %)

[Remark: We observe that R, 1 = R_y because rotating by —6 is the opposite of rotating by
6. And we observe that Fg1 = Fj because reflecting twice is the same as doing nothing.|

and

Problem 2. Projections in General.E] We call P a projection if PT = P and P? = P.

(a) If P is a projection, show that QQ = I — P is also a projection.

(b) Show that the projections P and @ from part (a) satisfy PQ = 0.

(c) Let A be any matrix (possibly non-square), so that AT A is a square matrix. Assuming
that (AT A)~! exists, show that P = A(ATA)~1AT is a projection. [We saw in class
that this matrix projects orthogonally onto the column space of A.]

(d) In the special case that A is invertible, show that P = A(AT A)~'AT = I. What does
this mean? [Hint: The column space of an invertible matrix is the whole space.]

1Technically7 these matrices are called orthogonal projections because they project at right angles.



(a): Let P be a projection so that P7 = P and P? = P. Then we have
QT=1-P)l'=1"-P'=1-P=Q

and

Q*=(I-P(I-P)=I?-IP-PI+P*=I-P-P+P=I1I-P=Q,
so that @ is also a projection.
(b): We have PQ = P(I—P) = PI—P? = P—P = 0. [Similarly, we have QP = 0.] Geometric
Meaning of (a) and (b): P and @ are projections onto a pair of orthogonal subspaces. See the
lecture notes for discussion.

(c): To show that P = A(ATA)~'AT is a projection we first observe that P? = P:
P? = [A(AT A)7LAT][A(AT A) AT

= AAT AT ATA) (AT A) AT
= AI(ATA)~1AT

_ (ATA)AAT

=P

To show that PT = P we will use the matrix identities (ABC)T = CTBT AT, (AT)T = A and
(Bfl)T — (BT)fl
[A(ATA) IAT]T

= (AT)T[(ATA)~ AT (ABCO)T = cTBT AT
= A[(ATA)) AT (A=A
= A[(ATA)T] AT (B YT = (BT)!
= A[AT(ATYT]71AT (BA)T = ATBT
= A[AT A7t AT (ATHYT = A
=P

: ~* exists then we use the identity “t = A" "B7" to observe that
d): If A~ exists th he identity (BA)™' = A7'B~! to ob h
P=AATA) AT = A4 (A AT = [T =1

Geometric Meaning: The matrix P is the projection onto the column space of A. If A is
invertible then the columns of A are independent, hence the column space of A is the whole
space. To project a point into the whole space we do nothing because the point is already
in the whole space. Geometrically we would never consider this case; we only do it to check
that the algebra makes sense.

Problem 3. Specific Projections. Consider the following matrices:

1 1 1
a=|[1], A={(2 1
-1 3 2

(a) Compute the 3 x 3 matrix P = a(a’a)~'a’ that projects onto the column space of a,
i.e., the matrix that projects onto the line ¢(1,1, —1).

(b) Compute the 3 x 3 matrix Q = A(AT A)~1AT that projects onto the column space of
A, i.e., the matrix that projects onto the plane s(1,2,3) 4+ (1,1, 2).



(¢) Check that P+ @ = I and PQ = 0. Why does this happen? [Hint: How are the line
from part (a) and the plane from part (b) related to each other?]

(a): The matrix that projects onto the line ta = ¢(1,1,—1) is

P =a(ala) la’
1 1\\
=1 (11 -1)f1 (11 -1)
~1 ~1
1
=1 ]|®"'0@ 1 -1)
~1
1
-1 (1 1 —1)
3\
1 1 -1
S\-1 -1 1

(b): The matrix that projects onto the plane C(A) = s(1,2,3) +¢(1,1,2) is
Q=AATA)1AT

11 12 3\ (L1 123
=121 11 2)|2 1 11 2

3 92 3 92

B ;} <14 9)‘1<123>

5 o) \9 6 11 2
_;}1<6 —9><123>

5 o) 3\-9 14){1 1 2

1 (P N3 3 g

:521 5 —4 1

3 92

9 -1 1
N N
S\1 1 2
(c): We have
AU S A L300
PrQ=g(1 1 —1)4g(-1 2 1)=z030)=T
3\t -1 1 1 1 2/ 3\o o 3
and
11 -1\, (2 -11 L (0 00
PQ=>11 1 —1|=(-1 2 1]==(0 0 0]=0

1 -1 1/3\1 1 2/ 9\o 0 o0



This happens because the line in part (a) and the plane in part (b) are orthogonal complements.
[I deliberately chose them that way. First I picked the columns of A and then I let a be their
cross product. Projections onto some random line and plane would not satisfy this.]

Problem 4. Least Squares Approximation. Consider the following two lines in R3:
Li:(z,y,z) =(0,0,0) +s(1,1,1), Lo:(z,y,2) =(1,0,0)+¢(—1,1,0).

(a) Write down the system of three linear equations in s,t that expresses the intersection
of the two lines. [This system has no solution because the lines do not intersect.]

(b) Find the OLS approximations § and # for the system in part (a).

(c) Use your answer from (b) to compute the minimum distance between the two lines.

(a): A general point of L; has the form (z,y,z) = (s, s,s) and a general point of Ly has the
form (z,y,z) = (1 —t,t,0). If the two lines intersect them we will have (s, s, s) = (1 —¢,t,0),
which gives a system of 3 linear equations in the 2 unknowns s, t:

s = 1—t, s + t = 1,
s = t, = s — t =0
s = 0. s + 0 = 0

(b): To find approximate solutions 3, we consider the normal equation:

= = =
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(c): The points on L; and Ly that come closest to each other are ($,5,5) = (1/3,1/3,1/3)
and (1 —#,£,0) = (1/2,1/2,0). The distance between these points is

1/3 1/2
1/3) —[1/2 )] =V(1/3-1/2)3+ (1/3-1/2)2 +(1/3—-0)2=+/1/6.
1/3 0

See the lecture notes for a picture.

Problem 5. Least Squares Regression. Consider four data points:

(.T, y) = (17 1)’ (27 1)7 (37 3)7 (4’ 5)

(a) Find the OLS best fit line y = max + b for these points. Draw your answer.
(b) Find the OLS best fit parabola y = ax?+bx +c for the same points. Draw your answer.



[I recommend using a computer algebra system to solve the normal equations.]

(a): Each data point gives a linear equation in m and b. This system of 4 linear equations in
2 unknowns has no solution, so we solve the normal equation:

11 1
2 1| /m\ |1
31 b) |3
4 1 )
11 1
1 2 3 4 2 1 m\ (1 2 3 4 1
111 1)(3 1)\p) \1 111)]3
4 1 )
30 10\ () _ (32
10 4 b) \10
m\ _ (7/5
b) \-1)°
The best fit line is y = /ma + b = (7/5)z — 1. Here is a picture:
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(b): Each data point gives a linear equation in a, b, c. This system of 4 linear equations in 3
unknowns has no solution, so we solve the normal equation:

1 11 1
4 2 1 2_1
9 3 1 ~ |3
16 4 1) \° 5
14916}151@ 14916}
1 2 3 4 bl=11 2 3 4
111 1 93 11, 111 1 3
16 4 1 5
354 100 30\ /[a 112
100 30 10| (o] =1 32
30 10 4 ¢ 10
a 1/2
b| =|-11/10
é 3/2

The best fit parabola is y = az? + bz + é = (1/2)a — (11/10)z + (3/2). Here is a picture:

Observe that this parabola is a “better fit” than the best fit line. That is, the sum of the
squares of the vertical errors is smaller. In fact, one can check that these sums are 6/5 in (a)
and 1/5 in (b). So I guess (b) is six times “better” than (a).



