
Math 210 Fall 2020
Homework 5 Drew Armstrong

Problem 1. Special Matrices. For any angle θ we define the following matrices:

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
, Fθ =

(
cos θ sin θ
sin θ − cos θ

)
, Pθ =

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
.

(a) Describe what each matrix does geometrically.
(b) Compute the determinant of each matrix.
(c) For each matrix that is invertible, compute the inverse.

(a): The matrix Rθ rotates counterclockwise by angle θ. The matrix Fθ reflects across the
line with angle θ/2. [See the lecture notes for dicsussion.] The matrix Pθ projects onto the
line with angle θ. Indeed, the matrix that projects onto the line ta = t(cos θ, sin θ) is

P =
1

‖a‖2
aaT =

1

cos2 θ + sin2 θ

(
cos θ
sin θ

)(
cos θ sin θ

)
=

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
.

(b): To save space we will write c = cos θ and s = sin θ. Then the determinants are

det(Rθ) = c2 + s2 = 1,

det(Fθ) = −c2 − s2 = −1,

det(Pθ) = c2s2 − cscs = 0.

Note that these determinants do not depend on the angle θ. [Remark: It is a general phe-
nomenon that rotations have determinant 1, reflections have determinant −1 and projections
have determinant 0.]

(c): Recall that a matrix is invertible if and only if its determinant is not zero. Thus Pθ is not
invertible. The inverses of Rθ and Fθ are given by

R−1
θ =

1

det(Rθ)

(
c s
−s c

)
=

(
c s
−s c

)
and

F−1
θ =

1

det(Rθ)

(
−c −s
−s c

)
=

(
c s
s −c

)
.

[Remark: We observe that R−1
θ = R−θ because rotating by −θ is the opposite of rotating by

θ. And we observe that F−1
θ = Fθ because reflecting twice is the same as doing nothing.]

Problem 2. Projections in General.1 We call P a projection if P T = P and P 2 = P .

(a) If P is a projection, show that Q = I − P is also a projection.
(b) Show that the projections P and Q from part (a) satisfy PQ = 0.
(c) Let A be any matrix (possibly non-square), so that ATA is a square matrix. Assuming

that (ATA)−1 exists, show that P = A(ATA)−1AT is a projection. [We saw in class
that this matrix projects orthogonally onto the column space of A.]

(d) In the special case that A is invertible, show that P = A(ATA)−1AT = I. What does
this mean? [Hint: The column space of an invertible matrix is the whole space.]

1Technically, these matrices are called orthogonal projections because they project at right angles.



(a): Let P be a projection so that P T = P and P 2 = P . Then we have

QT = (I − P )T = IT − P T = I − P = Q

and
Q2 = (I − P )(I − P ) = I2 − IP − PI + P 2 = I − P − P + P = I − P = Q,

so that Q is also a projection.

(b): We have PQ = P (I−P ) = PI−P 2 = P−P = 0. [Similarly, we have QP = 0.] Geometric
Meaning of (a) and (b): P and Q are projections onto a pair of orthogonal subspaces. See the
lecture notes for discussion.

(c): To show that P = A(ATA)−1AT is a projection we first observe that P 2 = P :

P 2 = [A(ATA)−1AT ][A(ATA)−1AT ]

= A((((
(((((ATA)−1(ATA)(ATA)−1AT

= AI(ATA)−1AT

= (ATA)−1AT

= P.

To show that P T = P we will use the matrix identities (ABC)T = CTBTAT , (AT )T = A and
(B−1)T = (BT )−1:

P T = [A(ATA)−1AT ]T

= (AT )T [(ATA)−1]TAT (ABC)T = CTBTAT

= A[(ATA)−1]TAT (AT )T = A

= A[(ATA)T ]−1AT (B−1)T = (BT )−1

= A[AT (AT )T ]−1AT (BA)T = ATBT

= A[ATA]−1AT (AT )T = A

= P.

(d): If A−1 exists then we use the identity (BA)−1 = A−1B−1 to observe that

P = A(ATA)−1AT =��
�

AA−1
��

���
�

(AT )−1AT = II = I.

Geometric Meaning: The matrix P is the projection onto the column space of A. If A is
invertible then the columns of A are independent, hence the column space of A is the whole
space. To project a point into the whole space we do nothing because the point is already
in the whole space. Geometrically we would never consider this case; we only do it to check
that the algebra makes sense.

Problem 3. Specific Projections. Consider the following matrices:

a =

 1
1
−1

 , A =

1 1
2 1
3 2

 .

(a) Compute the 3× 3 matrix P = a(aTa)−1aT that projects onto the column space of a,
i.e., the matrix that projects onto the line t(1, 1,−1).

(b) Compute the 3× 3 matrix Q = A(ATA)−1AT that projects onto the column space of
A, i.e., the matrix that projects onto the plane s(1, 2, 3) + t(1, 1, 2).



(c) Check that P +Q = I and PQ = 0. Why does this happen? [Hint: How are the line
from part (a) and the plane from part (b) related to each other?]

(a): The matrix that projects onto the line ta = t(1, 1,−1) is

P = a(aTa)−1aT

=

 1
1
−1

(1 1 −1
) 1

1
−1

−1 (
1 1 −1

)

=

 1
1
−1

 (3)−1 (1 1 −1
)

=
1

3

 1
1
−1

(1 1 −1
)

=
1

3

 1 1 −1
1 1 −1
−1 −1 1

 .

(b): The matrix that projects onto the plane C(A) = s(1, 2, 3) + t(1, 1, 2) is

Q = A(ATA)−1AT

=

1 1
2 1
3 2

(1 2 3
1 1 2

)1 1
2 1
3 2

−1(
1 2 3
1 1 2

)

=

1 1
2 1
3 2

(14 9
9 6

)−1(
1 2 3
1 1 2

)

=

1 1
2 1
3 2

 1

3

(
6 −9
−9 14

)(
1 2 3
1 1 2

)

=
1

3

1 1
2 1
3 2

(−3 3 0
5 −4 1

)

=
1

3

 2 −1 1
−1 2 1
1 1 2

 .

(c): We have

P +Q =
1

3

 1 1 −1
1 1 −1
−1 −1 1

+
1

3

 2 −1 1
−1 2 1
1 1 2

 =
1

3

3 0 0
0 3 0
0 0 3

 = I

and

PQ =
1

3

 1 1 −1
1 1 −1
−1 −1 1

 1

3

 2 −1 1
−1 2 1
1 1 2

 =
1

9

0 0 0
0 0 0
0 0 0

 = 0.



This happens because the line in part (a) and the plane in part (b) are orthogonal complements.
[I deliberately chose them that way. First I picked the columns of A and then I let a be their
cross product. Projections onto some random line and plane would not satisfy this.]

Problem 4. Least Squares Approximation. Consider the following two lines in R3:

L1 : (x, y, z) = (0, 0, 0) + s(1, 1, 1), L2 : (x, y, z) = (1, 0, 0) + t(−1, 1, 0).

(a) Write down the system of three linear equations in s, t that expresses the intersection
of the two lines. [This system has no solution because the lines do not intersect.]

(b) Find the OLS approximations ŝ and t̂ for the system in part (a).
(c) Use your answer from (b) to compute the minimum distance between the two lines.

(a): A general point of L1 has the form (x, y, z) = (s, s, s) and a general point of L2 has the
form (x, y, z) = (1− t, t, 0). If the two lines intersect them we will have (s, s, s) = (1− t, t, 0),
which gives a system of 3 linear equations in the 2 unknowns s, t: s = 1− t,

s = t,
s = 0.

⇒

 s + t = 1,
s − t = 0
s + 0 = 0.

(b): To find approximate solutions ŝ, t̂ we consider the normal equation:1 1
1 −1
1 0

(s
t

)
=

1
0
0


(

1 1 1
1 −1 0

)1 1
1 −1
1 0

(ŝ
t̂

)
=

(
1 1 1
1 −1 0

)1
0
0


(

3 0
0 2

)(
ŝ
t̂

)
=

(
1
1

)
(
ŝ
t̂

)
=

(
1/3
1/2

)
.

(c): The points on L1 and L2 that come closest to each other are (ŝ, ŝ, ŝ) = (1/3, 1/3, 1/3)
and (1− t̂, t̂, 0) = (1/2, 1/2, 0). The distance between these points is∥∥∥∥∥∥

1/3
1/3
1/3

−
1/2

1/2
0

∥∥∥∥∥∥ =
√

(1/3− 1/2)3 + (1/3− 1/2)2 + (1/3− 0)2 =
√

1/6.

See the lecture notes for a picture.

Problem 5. Least Squares Regression. Consider four data points:

(x, y) = (1, 1), (2, 1), (3, 3), (4, 5).

(a) Find the OLS best fit line y = mx+ b for these points. Draw your answer.
(b) Find the OLS best fit parabola y = ax2+bx+c for the same points. Draw your answer.



[I recommend using a computer algebra system to solve the normal equations.]

(a): Each data point gives a linear equation in m and b. This system of 4 linear equations in
2 unknowns has no solution, so we solve the normal equation:

1 1
2 1
3 1
4 1

(mb
)

=


1
1
3
5


(

1 2 3 4
1 1 1 1

)
1 1
2 1
3 1
4 1

(m̂b̂
)

=

(
1 2 3 4
1 1 1 1

)
1
1
3
5


(

30 10
10 4

)(
m̂

b̂

)
=

(
32
10

)
(
m̂

b̂

)
=

(
7/5
−1

)
.

The best fit line is y = m̂x+ b̂ = (7/5)x− 1. Here is a picture:



(b): Each data point gives a linear equation in a, b, c. This system of 4 linear equations in 3
unknowns has no solution, so we solve the normal equation:

1 1 1
4 2 1
9 3 1
16 4 1


ab
c

 =


1
1
3
5


1 4 9 16

1 2 3 4
1 1 1 1




1 1 1
4 2 1
9 3 1
16 4 1


âb̂
ĉ

 =

1 4 9 16
1 2 3 4
1 1 1 1




1
1
3
5


354 100 30

100 30 10
30 10 4

âb̂
ĉ

 =

112
32
10


âb̂
ĉ

 =

 1/2
−11/10

3/2


The best fit parabola is y = âx2 + b̂x+ ĉ = (1/2)x2 − (11/10)x+ (3/2). Here is a picture:

Observe that this parabola is a “better fit” than the best fit line. That is, the sum of the
squares of the vertical errors is smaller. In fact, one can check that these sums are 6/5 in (a)
and 1/5 in (b). So I guess (b) is six times “better” than (a).


