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 The Growing Importance of Linear Algebra
 in Undergraduate Mathematics
 Alan Tucker

 Alan Tucker is SUNY Distinguished Teaching Professor of
 Applied Mathematics at the State University of New York-Stony
 Brook. He obtained his Ph.D. in mathematics from Stanford

 University in 1969. Dr. Tucker has been at Stony Brook since
 1970 except for sabbaticals at Stanford and UC-San Diego. He
 is current chair of the MAA Education Council and was MAA

 First Vice-President during 1988-1989. He comes from a very
 mathematical family, from grandfathers up to his two daughters.
 His father A. W. Tucker and (maternal) grandfather D. R. Curtiss
 were MAA Presidents; his brother Tom is past First Vice-Presi?
 dent.

 Linear algebra stands today as the epitome of accessible, yet powerful mathemati?
 cal theory. Linear algebra has many appealing facets which radiate in different
 directions. In the 1960s, linear algebra was positioned to be the first real mathe?
 matics course in the undergraduate mathematics curriculum in part because its
 theory is so well structured and comprehensive, yet requires limited mathematical
 prerequisites. A mastery of finite vector spaces, linear transformations, and their
 extensions to function spaces is essential for a practitioner or researcher in most
 areas of pure and applied mathematics. Linear algebra is the mathematics of our
 modern technological world of complex multivariable systems and computers.

 The advent of digital computers in the last forty years has eliminated the tedium
 of the extensive computations associated with linear systems. With computers,
 linear models such as linear programming and linear regression are now used to
 organize and optimize virtually all business activities from street-sweeping to
 market research to controlling oil refineries. While mathematical methods?prin?
 cipally calculus-based analysis?were once largely restricted to the physical sci?
 ences, tools of linear algebra find use in almost all academic fields and throughout
 modern society. The interaction with modern computation is especially appealing:
 previously, theory was needed to give analytic answers since explicit computation
 was hopelessly tedious; nowadays, theory is used to guide increasingly complex
 computations. As noted below, crucial developments in matrix theory and auto?
 mated computations have occurred hand-in-hand ever since the term 'matrix' was
 coined by J. J. Sylvester in 1848.

 There is an even more pervasive practical side of linear algebra. Stated in
 starkest terms, linear problems are solvable while nonlinear problems are not. Of
 course, some nonlinear problems with a small number of variables can be solved,
 but 99.99% of multivariable nonlinear problems can be solved only by recasting
 them as linear systems. For example, finite element and finite difference schemes
 for solving partial differential equations in the end rely on solving systems of n
 linear equations in n variables.

 The theoretical status of linear algebra is as important as its applicability and its
 role in computation. Vector spaces and linear transformations are central themes
 of much of mathematics. The fact that differentiation is a linear operator lies at
 the heart of the power of calculus and differential equations. Of course, the very
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 definition of the derivative concerns linearity: the slope of a tangent line?a local
 linear approximation?of a function. Fourier series arise from one orthogonal
 basis for the vector space of continuous functions. Most of functional analysis,
 especially topics such as Hilbert spaces and Fourier analysis, are part of the linear
 mathematics which grows naturally out of the concept of a vector space of
 functions introduced in sophomore linear algebra courses.

 The pedagogical virtues of an introductory linear algebra course are just as
 impressive as the subject's usefulness and central role in higher analysis. Linear
 algebra gives a formal structure to analytic geometry and solutions to 2 X 2 and
 3x3 systems of linear equations learned in high school. A vector space is the
 natural choice for a first algebraic system for students to study formally because its
 properties are all part of students' knowledge of analytic geometry. Unlike groups
 and fields, one can draw insightful pictures of elements in vector spaces. Linear
 transformations on (finite-dimensional) vector spaces also have concrete descrip?
 tions with matrices.

 Matrix algebra generalizes the single-variable algebra of high school mathemat?
 ics to give a very striking demonstration of the power of algebraic notation. For a
 simple example, the matrix equation p(10)=^410p for the population p(10) in the
 10th period of a growth model presents a relationship between entries in p(10) and
 in p that is far too complex to write out explicitly. Matrix algebra is the standard
 language for much of applied mathematics. For example, the least squares solution
 to a system of equations Ax = b is given by the matrix expression (ATA)~1ATb,
 and, building on this, the basic projection step in Karmarkar's algorithm for linear
 programming is given by the matrix expression (I-A(ATA)~lAT). (Note that in
 parallel with the 'low-level' and 'high-level' languages for programming computers,

 matrix algebra has a low-level, e.g., cu = Haikbkj, and a high-level, e.g., C =AB,
 notational language.)

 Linear algebra takes students' background in Euclidean space and formalizes it
 with vector space theory that builds on algebra and the geometric intuition
 developed in high school. Then this comfortable setting is shown to apply with
 unimagined generality, producing vector spaces of functions and more. Similarly,
 the easy-to-follow linear transformations on Euclidean space described through
 matrices generalize to linear operators on function spaces.

 Linear algebra is also appealing because it is so powerful yet simple. There is a
 satisfying theoretical answer to almost any question a student can pose in linear
 algebra. The theory also leads directly to efficient computation. Even when a
 system of equations Ax = b has no solution (say, when A has more rows than
 columns and b is not in the range of A), linear algebra provides the pseudo-inverse
 to find a closest (least-squares) approximate solution. A first course in linear
 algebra contains beautiful classification theorems, such as the fact that every
 /c-dimensional real vector space is isomorphic to Rk.

 A further pedagogical strength of linear algebra is that it joins together methods
 and insights of geometry, algebra, and analysis; examples of these connections
 abound in the articles in this special issue of the College Mathematics Journal. This
 combination of contributing fields plus the powerful framework of vector spaces
 and linear transformations allows a sophomore course in linear algebra to define
 the ground rules for much of higher analysis, advanced geometry, statistics,
 operations research, and computational applied mathematics. For example, one of
 these ground rules is that it suffices to understand the action of a linear transfor?
 mation on a set of basis functions and then let linearity do the rest.

 Linear algebra really is a model for what a mathematical theory should be!
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 A Brief History of Linear Algebra and Matrix Theory

 I would like to give a brief history of linear algebra and, especially, matrices. The
 subject is relatively young. Excluding determinants, its origins lie in the nineteenth
 century. Most interestingly, many of the advances in the nineteenth century came
 from non-mathematicians.

 Matrices and linear algebra did not grow out of the study of coefficients of
 systems of linear equations, as one might guess. Arrays of coefficients led mathe?
 maticians to develop determinants, not matrices. Leibnitz, co-inventor of calculus,
 used determinants in 1693 about one hundred and fifty years before the study of
 matrices in their own right. Cramer presented his determinant-based formula for
 solving systems of linear equations in 1750. The first implicit use of matrices
 occurred in Lagrange's work on bilinear forms in the late 18th century. His
 objective was to characterize the maxima and minima of functions of several real
 variables. Besides requiring the first derivatives to be zero, he needed a condition
 on the matrix of second derivatives: the condition was positive definiteness or
 negative definiteness (although he did not use matrices).

 Gauss developed Gaussian elimination around 1800, to solve least squares
 problems in celestial computations and later in geodetic computations. It should
 be noted that Chinese manuscripts from several centuries earlier have been found
 that explain how to solve a system of three equations in three unknowns by
 'Gaussian' elimination. Gaussian elimination was for years considered part of the
 development of geodesy, not mathematics. Gauss-Jordan elimination's first appear?
 ance in print was in a handbook on geodesy by Wilhelm Jordan. The name Jordan
 in Gauss-Jordan elimination does not refer to the famous mathematician Camille

 Jordan, but rather to the geodesist Wilhelm Jordan. (Most linear algebra texts
 mistakenly identified Gauss-Jordan elimination with the mathematician Jordan,
 until a 1987 article in the American Mathematical Monthly by Athloen
 and McLaughlin [1], motivated by a historical talk by this author's father,
 A. W. Tucker, set the record straight.)

 For matrix algebra to develop, one needed two things: the proper notation and
 the definition of matrix multiplication. Interestingly both these critical factors
 occurred at about the same time, around 1850, and in the same country, England.
 Except for Newton's invention of calculus, the major mathematical advances in the
 1600s, 1700s and early 1800s were all made by Continental mathematicians, such as
 Bernoulli, Cauchy, Euler, Gauss, and Laplace. But in the mid-1800s, English
 mathematicians pioneered the study of various algebraic systems. For example,
 Augustus DeMorgan and George Boole developed the algebra of sets (Boolean
 algebra) in which symbols were used for propositions and abstract elements.

 The introduction of matrix notation and the invention of the word matrix were

 motivated by attempts to develop the right algebraic language for studying deter?
 minants. In 1848, J. J. Sylvester introduced the term "matrix," the Latin word for
 womb, as a name for an array of numbers. He used womb, because he viewed a
 matrix as a generator of determinants. That is, every subset of k rows and k
 columns in a matrix generated a determinant (associated with the submatrix
 formed by those rows and columns).

 Matrix algebra grew out of work by Arthur Cayley in 1855 about linear
 transformations. Given transformations,

 Tx: x' = ax + by T2: x" = ax' + f3yf

 y' = cx + dy y" = yx' + dy\
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 he considered the transformation obtained by performing 7\ and then per?
 forming T2.

 T2TX: x"= (aa+/3c)x + (ab+(3d)y

 y" = (ya +8c)x + (yb + 8d)y.

 In studying ways to represent this composite transformation, he was led to define
 matrix multiplication: the matrix of coefficients for the composite transformation
 T2Tl is the product of the matrix for T2 times the matrix for 7V Cayley went on to
 study the algebra of these compositions?matrix algebra?including matrix in?
 verses. In his 1858 Memoir on the Theory of Matrices, Cayley gave the famous
 Cayley-Hamilton theorem: a square matrix satisfies its characteristic equation. The
 use of a single symbol A to represent the matrix of a transformation was essential
 notation of this new algebra. A link between matrix algebra and determinants was
 quickly established with the result det(AB) = det(^4)det(?). But Cayley seemed to
 have realized that matrix algebra might grow to overshadow the theory of determi?
 nants. He wrote, "There would be many things to say about this theory of matrices
 which should, it seems to me, precede the theory of determinants."

 It is a curious sidelight to this discussion that another prominent English
 mathematician of this time was Charles Babbage who built the first modern
 calculating machine. Abstracting the mechanics of computation as well as its
 algebraic structure and notation (and DeMorgan's work on the algebra of sets
 which would later be crucial in computer science) seemed to be all part of the
 same general intellectual pattern in England in the mid-nineteenth century.

 Mathematicians also tried to develop an algebra of vectors but there was no
 natural general definition for the product of two vectors. The first vector algebra,
 involving a noncommutative vector product, was proposed by Hermann
 Grassmann's first Ausdehnungslehre (1844). This text also introduced column-row
 products, what are now called simple matrices or rank-one matrices (formed by
 matrix multiplication of a column vector times a row vector). The famous treatise
 on vector analysis by the late 19th-century American mathematical physicist J.
 Willard Gibbs developed vector and matrix theory further [6], including represen?
 tations of general matrices, which he called dyadics, as a sum of simple matrices,
 which Gibbs called dyads. Later the physicist P. A. M. Dirac introduced the term
 "bra-ket" for what we now call the scalar product of a "bra" (row) vector times a
 "ket" (column) vector, while the term "ket-bra" referred to the product of "ket"
 (column) times "bra" (row), yielding what we call here a simple matrix. (Physicists
 in the 20th century developed the convention of assuming any vector was implicitly
 a column vector with a row vector represented as the transpose of a column
 vector.)

 Matrices remained closely associated with linear transformations and, from the
 theoretical viewpoint, were by 1900 just a finite-dimensional subcase of an emerg?
 ing general theory of linear transformations. Matrices were also viewed as a
 powerful notation, but after an initial spurt of interest in the nineteenth century
 were little studied in their own right. More attention was paid to vectors, which are
 basic mathematical elements of physics as well as many areas of mathematics. The
 modern definition of a vector space was introduced by Peano in 1888. Abstract
 vector spaces, whose elements were functions or linear transformations, soon
 followed.

 Interest in matrices, with emphasis on their numerical analysis, re-emerged after
 World War II with the development of modern digital computers. In 1947, John
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 von Neumann and Herman Goldstine introduced condition numbers in analyzing
 round-off error. Alan Turing, the other giant (with von Neumann) in the develop?
 ment of stored-program computers, introduced the LU decomposition of a matrix
 in 1948. The usefulness of the QR decomposition was realized a decade later. The
 most important contributor in this effort was J. H. Wilkinson, who, among other
 achievements, showed the stability of Gaussian elimination, still the best way
 known to solve a system of linear equations. See [4], [9] for information about the
 foundations of numerical linear algebra.

 Linear Algebra in the Undergraduate Curriculum

 Although linear algebra is now solidly established in the lower-division collegiate
 mathematics curriculum, it is important to remember this role is fairly recent. The
 other topics in the beginning mathematics sequence?single-variable calculus,
 differential equations, and multivariate calculus?have been part of the collegiate
 curriculum for two hundred years, while linear algebra, in its current vector-space
 format, first appeared in basic graduate texts in the mid-1940s and first appeared
 in undergraduate texts, as part of abstract algebra, in the late-1950s. The first
 lower-division text with vector spaces was Kemeny, Snell, Thompson and Mirkel's
 1959 Finite Mathematical Structures, which combined vector-space theory with
 matrix-based applications, such as Markov chains and linear programming.

 Before the publication of the landmark 1941 text, Modern Algebra, by Birkhoff
 and MacLane, 20th-century algebra texts focused on algebraic solutions to polyno?
 mial equations (leading to algebraic geometry) and related matters. The funda?
 mental theorem of algebra, proved by Gauss, that every polynomial over the
 complex numbers has a root, illustrates this 'old' algebra. The linear algebra then
 studied grew out of Lagrange's work on bilinear forms mentioned above. Matrices
 were barely mentioned. The 'modern' algebra, pushed by Emmy Noether and
 disciples of hers, such as E. Artin and B. van der Waerden, stressed the intrinsic
 structure of algebraic systems. In this setting, linear algebra was about the
 algebraic structure of linear maps (linear transformations). Matrices were viewed
 as having limited intrinsic value, since the matrix used to represent a finite-
 dimensional linear transformation depended on the choice of basis. (For more, see
 [7]).

 The text of Kemeny et al. presented the two sides of linear algebra, vector
 spaces and matrix applications. When linear algebra was widely adopted in the
 1960s in the lower-division mathematics curriculum, the course followed the vector
 space syllabus of the 1965 CUPM Recommendations for a General Collegiate
 Mathematics Curriculum, growing out to the 'modern' algebra approach of
 Noether. Such a focus has two very important functions: giving students a very
 accessible, geometrically based theory whose study serves as a preparation to more
 abstract, upper-division mathematics courses; and providing a framework for a
 modern vector-space approach to a sequel course in multivariate calculus. At the
 same time, the use of matrix-based models like those in Kemeny et al. (e.g.,
 Markov chains) has exploded with the accessibility of digital computers. Some
 argue that linear algebra and associated matrix models are as widely used a
 mathematical tool as calculus and would like to see linear algebra taught for a
 broader audience with the sort of practical point of view used to teach calculus.

 An example of the sort of topic that might get more attention in a matrix-based
 course would be the 'asymptotic' behavior of inverses. In a theoretical framework,
 either an?Xn matrix has an inverse A or does not; if it does then the columns of
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 A are linearly independent and dim(Range(A)) = n, etc. The matrix-based course
 would examine algebraically, analytically, and geometrically what happens when a
 slight perturbation in some coefficients of A causes the inverse to 'blow up' and
 cease to exist. One would introduce the concept of the condition number of A to
 measure how close A is to blowing up.

 Another example involves the very definition of matrix multiplication. Vector-
 space-based texts use matrix multiplication rarely (just to compose two linear maps
 and in the definition of similarity). Thus matrices are just a tool and the entry-by-

 entry definition ctj = Haikbkj is about all that is said about computing the matrix
 product C =AB. However, a matrix-based text would focus on rows and columns,
 rather than entries. If a; denotes the j-th column of matrix A and a',- denotes the
 i-th row of A, then we have that ctj = a',-by and C = Ea^ *b'k (where * denotes
 matrix multiplication of a column times a row). Also C=AB can be defined
 column-by-column with c7- =Abj or row-by-row with c\ = a^B.

 An NSF-sponsored workshop on college linear algebra at Williamsburg in
 August 1990 recommended giving more attention to matrix algebra and its applica?
 tions, while endorsing the current level of theory and rigor. A recent report of the
 CUPM Subcommittee on the Mathematics Major finds merit in both approaches
 (provided the vector space theory is covered in a subsequent upper-division course
 if the first linear algebra course emphasizes matrix methods). Not surprisingly,
 linear algebra courses offered outside mathematics departments concentrate mainly
 on matrix methods and models, although these 'users' courses also cover vector
 space foundations. In support of matrix-based applications, it is argued that most
 mathematics majors do not go to graduate school, but work in business or teach in
 secondary schools, where an applied, matrix-based focus is more useful. On the
 other hand, since calculus is taught as a service course with little theory, a
 balancing theory orientation to linear algebra appears vital for mathematics majors
 advancing to courses in abstract algebra and analysis.

 In smaller institutions where only one course in linear algebra can realistically
 be offered, the challenge is to try to find a middle ground blending vector spaces
 and matrix methods and at a level that does not scare off users and yet smooths the
 transition for mathematics majors to advanced courses. More broadly, practitioners
 and theoreticians should work together in search of common ground and an
 understanding of each others' interests.

 This author is personally a bit frustrated that calculus gets all of the first year
 and half of the second year of the lower-divison core mathematics sequence.
 Hopefully early in the next century, there will be a 'redistricting' of the lower-
 division mathematics sequence and linear algebra will get equal time with calculus.

 Acknowledgment. Many of the insights in this article are due to my father A. W. Tucker.
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 To Each His Own Space

 In teaching linear algebra I have used the following quotation, usually
 soon after I have shown that the way we multiply two matrices is forced on
 us by the definition of the composition of two linear transformations.

 "Me, I prefer pure thought. According to my subjective judgment
 calculating is on a lower intellectual (artistic?) level than thinking: it is
 more like the tenpenny nails of the carpenter than the blueprints of the
 architect. As far as I am concerned matrices are mysteries and linear
 transformations light the way. Matrix multiplication is an algorithm?but
 do you remember the proof that it is associative? It is a computational
 mess, and if you don't know the other way to get at it, by "pure thought",
 you don't understand it. As a student I was exposed to the matrix theory in
 Bocher's regrettable old book, and I never understood what was going on
 till I heard von Neumann lecture about infinite-dimensional Hilbert

 spaces."

 P. R. Halmos, Pure thought is better yet..., College Mathematics Journal 16 (1985)
 p. 14)

 However, I've always felt that this quotation was a bit one-sided. Now I
 can complement it with one by Irving Kaplansky, a good friend of Paul
 Halmos.

 "We {Halmos and Kaplansky) share a love of linear algebra. I think it is
 our conviction that we'll never understand infinite-dimensional operators
 properly until we have a decent mastery of finite matrices. And we share a
 philosophy about linear algebra: we think basis-free, we write basis-free,
 but when the chips are down we close the office door and compute with
 matrices like fury."

 Paul Halmos, Celebrating 50 Years of Mathematics, John H. Ewing and F. W.
 Gchring (Eds.), Springer-Verlag, NY, 1991, p. 88.

 Contributed by Peter Ross,
 Santa Clara University

 VOL 24, NO. 1, JANUARY 1993

This content downloaded from 129.171.6.188 on Thu, 19 Sep 2019 18:49:45 UTC
All use subject to https://about.jstor.org/terms


	Contents
	p. 3
	p. 4
	p. 5
	p. 6
	p. 7
	p. 8
	p. 9

	Issue Table of Contents
	College Mathematics Journal, Vol. 24, No. 1 (Jan., 1993) pp. 1-108
	Front Matter [pp. ]
	The Growitng Importance of Linear Algebra in Undergraduate Mathematics [pp. 3-9]
	Some Applications of Elementary Linear Algebra in Combinatorics [pp. 10-19]
	Graphs, Matrices, and Subspaces [pp. 20-28]
	Teaching Linear Algebra: Must the Fog Always Roll in? [pp. 29-40]
	The Linear Algebra Curriculum Study Group Recommendations for the First Course in Linear Algebra [pp. 41-46]
	Linear Algebra and Affine Planar Transformations [pp. 47-51]
	Arithmetic Matrices and the Amazing Nine-Card Monte [pp. 52-56]
	Subspaces and Echelon Forms [pp. 57-62]
	Fallacies, Flaws, and Flimflam [pp. 63-66]
	Classroom Capsules
	Gaussian Elimination in Integer Arithmetic: An Application of the L-U Factorization [pp. 67-71]
	Rotation Matrices in the Plane without Trigonometry [pp. 71-73]
	A Geometric Interpretation of the Columns of the (Pseudo)Inverse of A [pp. 73-75]

	Student Research Projects
	The Linear Transformation Associated with a Graph [pp. 76-78]

	Computer Corner
	Iterative Methods in Introductory Linear Algebra [pp. 79-88]

	Software Reviews [pp. 89-94]
	Problems and Solutions [pp. 95-100]
	Media Highlights [pp. 101-106]
	Book Review
	Review: untitled [pp. 107-108]

	Back Matter [pp. ]



