Math 210 Fall 2019
Exam 2 Drew Armstrong

There are 6 pages. each worth 6 points, for a total of 36 points. This is a closed book test.
No electronic devices are allowed.

Problem 1.
(a) Find some 2 x 2 matrices A and B such that AB # BA.
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(b) Find a 2 x 2 matrix A such that A # 0 and A~! does not exist.
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(c) Find a 2 x 2 matrix A such that A # I and A% = ].
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Problem 2.

1 0
(a) Find a matrix A such that A (é) = (O) and A <(1)> = (0)
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(¢) Using your matrices from parts (a) and (b). compute the matrix product BA.
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Problem 3. Consider the matrix A = <;1 :;)

a) Compute the characteristic polynomial det(A — \I).
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(b) Compute the eigenvalues of A.
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(c) Find an eigenvector for each eigenvalue.
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Problem 4. Consider the data points (b) = ( 0 ) . (2> \ <1)

(a) Find the equation b = C + tD of the (ordinary least squares) best fit line.
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(b) Draw the data points together with the best fit line.
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(¢) Let b= | C+0D ]. Fill in the blanks:
C+1D
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The point b is the (orthogonal) projection of the point
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Problem 5.

1
(a) Find the matrix P that projects (orthogonally) onto the line ¢ (1) .
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(b) Find the matrix @ that projects (orthogonally) onto the plane  + y + 2z = 0.
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(c) Compute the matrix product PQ. [Hint: Think of what it does.]
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Problem 6. Let M = ab” where a and b are some 2 x 1 vectors satisfying bTa = 1.

(a) Show that M? = M.
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(b) Show that a is an eigenvector of M.
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(d) Bonus (1 point). Give a geometric description of the function M.
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