There are 6 pages, each worth 6 points, for a total of 36 points. This is a closed book test. No electronic devices are allowed.

Problem 1.

(a) Find some 2×2 matrices A and B such that $AB \neq BA$.

(b) Find a 2×2 matrix A such that $A \neq 0$ and A^{-1} does not exist.

(c) Find a 2×2 matrix A such that $A \neq I$ and $A^2 = I$.

$$\begin{pmatrix} -1 & 0 \\ 0 & \pm 1 \end{pmatrix}$$
 or $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ or

Problem 2.

(a) Find a matrix
$$A$$
 such that $A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ and $A \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$$

(b) Find a matrix
$$B$$
 such that $B\begin{pmatrix}1\\0\\0\end{pmatrix}=\begin{pmatrix}1\\0\end{pmatrix}$ and $B\begin{pmatrix}0\\0\\1\end{pmatrix}=\begin{pmatrix}0\\1\end{pmatrix}$

(c) Using your matrices from parts (a) and (b), compute the matrix product BA.

$$BA = \begin{pmatrix} 1 & 5 & 0 \\ 0 & t & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Problem 3. Consider the matrix $A = \begin{pmatrix} 4 & -5 \\ 2 & -3 \end{pmatrix}$.

(a) Compute the characteristic polynomial $det(A - \lambda I)$.

(b) Compute the eigenvalues of A.

$$\chi^{2} - \chi - 2 = 0$$

$$\chi = \frac{1 \pm \sqrt{1+8}}{2} = -1 \text{ or } 2$$

(c) Find an eigenvector for each eigenvalue.

$$\lambda = -1: \begin{pmatrix} 4+1 & -5 & | & 0 \\ 2 & -3+1 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = t \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

$$\lambda = 2: \begin{pmatrix} 4-2 & -5 & | & 0 \\ 2 & 3-2 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2-5 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = t \begin{pmatrix} 5 \\ 2 \end{pmatrix},$$

Problem 4. Consider the data points
$$\begin{pmatrix} t \\ b \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
.

(a) Find the equation b = C + tD of the (ordinary least squares) best fit line.

(b) Draw the data points together with the best fit line.

(c) Let $\hat{\mathbf{b}} = \begin{pmatrix} C - 1D \\ C + 0D \\ C + 1D \end{pmatrix}$. Fill in the blanks:

The point $\hat{\mathbf{b}}$ is the (orthogonal) projection of the point (0,2,1)

onto the plane
$$S(1,1,1)+t(-1,0,1)$$

Problem 5.

(a) Find the matrix P that projects (orthogonally) onto the line $t \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$.

$$P = {1 \choose 2} {(112) \choose 2} {(112) \choose 2} {(112) \choose 2} = {1 \choose 1} {(112) \choose 2} = {1 \choose 2} {(112) \choose 2} = {1 \choose 2} {(112) \choose 2}$$

(b) Find the matrix Q that projects (orthogonally) onto the plane x + y + 2z = 0.

$$Q = T - P = \frac{1}{6} \begin{pmatrix} 600 \\ 060 \\ 006 \end{pmatrix} - \frac{1}{4} \begin{pmatrix} 112 \\ 224 \end{pmatrix}$$
$$= \frac{1}{6} \begin{pmatrix} 5 - 1 - 2 \\ -15 - 2 \\ -2 - 22 \end{pmatrix}$$

(c) Compute the matrix product PQ. [Hint: Think of what it does.]

Problem 6. Let $M = \mathbf{a}\mathbf{b}^T$ where \mathbf{a} and \mathbf{b} are some 2×1 vectors satisfying $\mathbf{b}^T \mathbf{a} = 1$.

(a) Show that $M^2 = M$.

$$M^{2} = (\vec{a} \vec{b}^{T})(\vec{a} \vec{b}^{T})$$

$$= \vec{a}(\vec{b}^{T}\vec{a})\vec{b}^{T} = \vec{a}\vec{b}^{T} = M$$

(b) Show that a is an eigenvector of M.

$$M\vec{a} = (\vec{a} \vec{b} \vec{T})\vec{a}$$

$$= \vec{a}(\vec{b} \vec{a}) = \vec{a} = 1\vec{a}$$
1

(c) Let \mathbf{x} be any nonzero vector perpendicular to \mathbf{b} . Show that \mathbf{x} is an eigenvector of M.

$$M\vec{x} = (\vec{x}\vec{b}^{T})\vec{x}$$

$$= \vec{a}(\vec{b}\vec{b}\vec{x}) : \vec{o} = 0\vec{x}$$

(d) Bonus (1 point). Give a geometric description of the function M.

