Math 210 Fall 2019
Exam 1 Drew Armstrong

There are 6 pages, each worth 6 points, for a total of 36 points. This is a closed book test.
No electronic devices are allowed.

Problem 1.

(a) Draw the points u + v, 2v 4+ u and 2v — u.
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(b) Draw the shaded region {su+tv:0<s<1land0<t<2}.

(c) Draw the lines {u + ¢(v —u)} and {¢t(2v + u)}.
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Problem 2. Let u and v be vectors with the following properties:

ueu=1, vev =4

and uev =1.
(a) Compute the angle between u and v.
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(b) Compute the dot product (u + v) e (3u — v).
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(¢) Compute the length of u —v.
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Problem 3. Consider the plane II defined by = + 2y + z = 0.

(a) Find one vector that is perpendicular to II and one vector that is parallel to II.
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(b) Compute the intersection of IT with the line (z,y,2) = (1,1,0) + (1,0, 1).
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(c) Compute the intersection of Il with the plane z +y + 2 = 1.
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Problem 4. Fill in the blanks.

(a) A system of m linear equations in n unknowns represents the intersection of

m ( n /1) -dimensional shapes in V\ -dimensional space.

(b) Continuing from (a). The solution is always a flat shape. Indeed, if the two points xo
and x; are in the solution then
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every point of the form is also in the solution.

(¢) Continuing from (a) and (b).

If m < n then the solution most likely has dimension
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Problem 5. Consider the following system of 3 linear equations in 4 unknowns:

Ty, + T2 + x3 + x4 = 1,
2¢7 4+ 2z9 + x3 + x4 = 3,
3x17 4+ 3z + 223 + 2x4 = 4.

(a) Put the system in Reduced Row Echelon Form (RREF).
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(b) Tell me the pivot and non-pivot variables.
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(c) Write down the complete solution of the system.
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Problem 6. Consider the following system of 3 linear equations in 3 unknowns:

T + yv + z = 1,
z + 2y + 3z = 3,
r + y + az = b

(a) Put the system in staircase form. [You do not need to compute the full RREF ]
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(b) Find all the values of a and b corresponding to 0, 1 and oo many solutions.

There is 1 solution when 0\ # /‘

There are oo solutions when O\ - /l - LD

There are 0 solutions when




