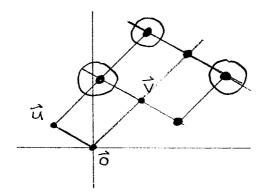
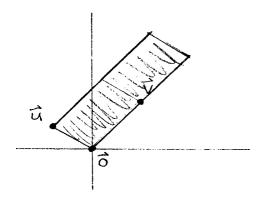
There are 6 pages, each worth 6 points, for a total of 36 points. This is a closed book test. No electronic devices are allowed.

Problem 1.

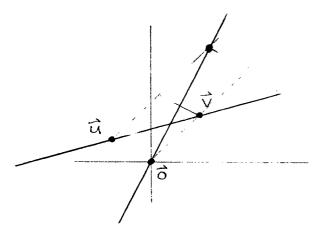
(a) Draw the points $\mathbf{u} + \mathbf{v}$, $2\mathbf{v} + \mathbf{u}$ and $2\mathbf{v} - \mathbf{u}$.



(b) Draw the shaded region $\{s\mathbf{u}+t\mathbf{v}:0\leq s\leq 1\text{ and }0\leq t\leq 2\}.$



(c) Draw the lines $\{\mathbf{u} + t(\mathbf{v} - \mathbf{u})\}\$ and $\{t(2\mathbf{v} + \mathbf{u})\}.$



Problem 2. Let **u** and **v** be vectors with the following properties:

$$\mathbf{u} \bullet \mathbf{u} = 1, \quad \mathbf{v} \bullet \mathbf{v} = 4 \quad \text{and} \quad \mathbf{u} \bullet \mathbf{v} = 1.$$

(a) Compute the angle between \mathbf{u} and \mathbf{v} .

$$\cos \theta = \frac{u \cdot v}{\sqrt{u \cdot u} \sqrt{v \cdot v}} = \frac{1}{\sqrt{1}\sqrt{4}} = \frac{1}{2}$$

$$\theta = 60^{\circ}$$

(b) Compute the dot product $(\mathbf{u} + \mathbf{v}) \bullet (3\mathbf{u} - \mathbf{v})$.

$$= 3u \cdot u - u \cdot v + 3v \cdot u - v \cdot v$$

$$= 3u \cdot u + 2u \cdot v - v \cdot v$$

$$= 3(1) + 2(1) - 4 = 1$$

(c) Compute the length of $\mathbf{u} - \mathbf{v}$.

$$||u-v||^2 = (u-v) \cdot (u-v)$$

$$= u \cdot u - 2u \cdot v + v \cdot v$$

$$= 1-2+4=3$$

$$||u-v|| = \sqrt{3}$$

Problem 3. Consider the plane Π defined by x + 2y + z = 0.

(a) Find one vector that is **perpendicular** to Π and one vector that is **parallel** to Π .

$$\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
 is parallel to TT because $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = 0$

(b) Compute the intersection of Π with the line (x, y, z) = (1, 1, 0) + t(1, 0, 1).

$$(x, y, \overline{t}) = (1+t, 1, t)$$

 $(1+t) + 2(1) + (t) = 0$
 $3 + 2t = 0$
 $t = -3/2$
 $(x, y, \overline{t}) = (-\frac{1}{2}, 1, -\frac{3}{2})$

(c) Compute the intersection of Π with the plane x + y + z = 1.

$$\begin{cases} x+y+z=1 \\ x+2y+z=0 \end{cases} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 & 0 \end{pmatrix}$$

$$\begin{cases} x + t = 2 \\ y = -1 \end{cases} \quad \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ \delta \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

Problem 4. Fill in the blanks.

(a) A system of m linear equations in n unknowns represents the intersection of

m = (n-1) -dimensional shapes in ______ dimensional space.

(b) Continuing from (a). The solution is always a flat shape. Indeed, if the two points x_0 and x_1 are in the solution then

every point of the form $\frac{+ \cancel{\chi}_1 + (1 + \cancel{\iota}) \cancel{\chi}_0}{1 + (1 + \cancel{\iota}) \cancel{\chi}_0}$ is also in the solution.

(c) Continuing from (a) and (b).

If m > n then the solution most likely does not exist

Problem 5. Consider the following system of 3 linear equations in 4 unknowns:

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1, \\ 2x_1 + 2x_2 + x_3 + x_4 = 3, \\ 3x_1 + 3x_2 + 2x_3 + 2x_4 = 4. \end{cases}$$

(a) Put the system in Reduced Row Echelon Form (RREF).

(b) Tell me the pivot and non-pivot variables.

Stree:
$$\chi_2$$
, χ_4

(c) Write down the complete solution of the system.

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2-s \\ s \\ -1-t \\ t \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -1 \\ 0 \end{pmatrix} + s \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ -1 \\ 1 \\ 1 \end{pmatrix}$$

Problem 6. Consider the following system of 3 linear equations in 3 unknowns:

$$\begin{cases} x + y + z = 1, \\ x + 2y + 3z = 3, \\ x + y + az = b. \end{cases}$$

(a) Put the system in staircase form. [You do not need to compute the full RREF.]

$$\begin{pmatrix} 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 2 & 2 \\ 0 & 0 & a-1 & b-1 \end{pmatrix}$$

$$\begin{cases} x + y + 2 = 1 \\ y + 2z = 2 \\ (\alpha - 1)z = b - 1 \end{cases}$$

(b) Find all the values of a and b corresponding to 0, 1 and ∞ many solutions.

There is 1 solution when \bigcirc

There are ∞ solutions when $\alpha = 1 = b$

There are 0 solutions when $\alpha = 1 + 6$