Intro to Linear Algebra Summer 2017
Quiz 1 Drew Armstrong

Problem 1. Consider two points @ and ¢ in the Cartesian plane.

a) Draw the points @ + ¥ and 3@ + 17
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Problem 2. Consider two vectors ¥ and w0 with the following properties:
Fed=|u>=1  @ew=|w[’=2 and Tew=0.

(a) Compute the length of the vector ¥+ .
S a7
[T+l = (V+&R) U‘*W
)
- \/a\/& Q_V°M7 LN
-+ 2(06) 4 g 3

e I R
(b) Compute the length of the vector & — 2.
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(c) Compute the cosine of the angle between the vectors 7 + W and 7 — 2wW.
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Intro to Linear Algebra Summer 2017
Quiz 2 Drew Armstrong

Problem 1.

(a) Find the equation of the line that is perpendicular to the vector (1,2) and contains the

point (0,0). o }
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(b) Find the equation of the line that is perpendicular to the vector (1,2) and contains the
point (1,1).

EO\BY\ \ S
?)mj I /h\ﬂ fmif"k {\}EE):

1+ 20N = C
e =

C
Se Hhe cquarien s L’?w ?j - "3/

(¢) Draw the lines from parts (a) and (b) on the same pair of axes. Label each line by its
equation.
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Problem 2.

(a) Find a parametrization for the line in 3D that contains the point (1,0,0) and is parallel
to the vector (1,2,3).
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(b) Compute the intersection of the line from part (a) with the plane z —y + z = 5.
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(c) Is the line from part (a) perpendicular to the plane from part (b)? Why or why not?
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Intro to Linear Algebra \ Summer 2017
Quiz 3 Drew Armstrong

Problem 1. Consider the following system of linear equations:

z + 2y + 0= -1
T+ 2y + z= 0
x4+ 2y + 2z = 1

(a) Put the system in reduced row echelon form (RREF)
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(b) Use your answer from part (a) to write down the complete solution.
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Problem 2. Consider the same system of equations again: 4
x4+ 2y + 0= -1 Q
T+ 2y + z = 0 @
T+ 2+ 22 = 1 @

(a) The three linear equations represent three planes living in 3D. Tell me three vectors
that are perpendicular to these three planes.
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(b) Fill in the blanks. Let Fy, Es, E3 represent the three linear equations. The reason that
the solution is a line (instead of a point) is because there exists a non-trivial relation
among the equations:
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(c) Fill in the blanks. The equation from part (b) has the following consequences:

If the point (z,y, z) satisfies the first and second equations then it also
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Geometrically, the intersection of the first and second planes is contained in
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