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Record of What We Did Drew Armstrong

Surface Area of a Sphere

Our goal is to prove that a sphere of radius r has surface area 4πr2. We are looking for a
convincing geometric proof that does not use the Fundamental Theorem of Calculus.

• If the dimensions of a 3D shape are multplied by 1/2, what happens to the volume?

First of all, what happens to a cube? If a cube with side length ` has volume `3 then a cube
with side length `/2 has volume (`/2)3 = `3/8. Thus the volume is multiplied by 1/8. This is
easy to see because the original cube can be divided into 8 of the smaller cubes.

But that’s just a cube. What about other 3D shapes? Well, any 3D shape—for example, a
horse—can be approximated by many tiny cubes. If we multiply the dimensions of the horse
by 1/2 then the volume of each tiny cube gets multiplied by 1/8, hence the volume of the
horse gets multiplied by 1/8.

• What is a prism? What is the volume of a prism?

Consider two congruent 2D shapes in space separated by a translation. A prism is the 3D
shape we get by connecting corresponding points of the 2D shapes. We say that it is a right
prism if the translation is perpendicular fo the planes of the shapes.

Let B be the area of the 2D shape (called the base) and let h be the perpendicular distance
between the planes of the two shapes (called the height). The volume of the prism is Bh.
If we consider two prisms with the same base shape and the same height then Cavalieri’s
Principle says that they should have the same volume. [Think of a stack of coins. It has
the same volume even if we build it crooked.] For example, these two prisms have the same
volume.

• What is the volume of a tetrahedron?

Consider a tetrahedron where B is the area of the base triangle and h is the perpendicular
height. I claim that its volume is V = 1

3Bh. We will use a dissection described in Euclid’s
Elements, Book XII, Proposition 3.



By connecting the midpoints of the edges we can dissect the tetrahedron into two smaller
tetrahedra and two triangular prisms as follows.

Note that the each of the two smaller tetrahedra has volume 1
8V because they are similar

to the larger tetrahedron but with half the dimensions. One of the triangular prisms is easy
to deal with because its base triangle has area 1

4B (the base of the large tetrahedron can

be divided into four equal triangles) and its perpendicular height is 1
2h. Thus it has volume

1
4B

1
2h = 1

8Bh. The other prism is more difficult because we don’t know its height or its base
area. However, if we double it then we obtain a nicer prism with parallelogram base.

This nicer prism has base with area 1
2B (why?) and perpendicular height 1

2h, thus it has

volume 1
2B

1
2h = 1

4Bh. Since the nicer prism is double the bad prism, the bad prism must

have volume 1
2(14Bh) = 1

8Bh. Now we have computed the volumes of the four pieces. Putting
them together gives

V =
1

8
V +

1

8
V +

1

8
Bh+

1

8
Bh

V =
1

4
V +

1

4
Bh

4V = V +Bh

3V = Bh

V =
1

3
Bh.

Remark: This is the easiest proof I know. Max Dehn proved in 1902 that is it impossible
to cut a tetrahedron into finitely many pieces and reassemble them to form a cube. Thus we
expect that no “finite” proof of the formula 1

3Bh is possible. So which part of our proof was

not “finite”? [Hint: How did we prove that each smaller tetrahedron has volume 1
8V ?]

• What is the volume of a general cone?

To form a general cone we start with a 2D shape in space and we connect it to some point
outside the shape. Just as for the tetrahedron, I claim that the volume is 1

3Bh where B is the
area of the base shape and h is the perpendicular height.



Let V be the volume of the cone. Suppose you can dissect the base shape into triangles
(for example, the base shape shown above can be dissected into four triangles) and let these
triangles have areas B1, B2, . . . , Bn. Note that we have B = B1+B2+· · ·+Bn. The tetrahedra
over these triangles fill up the cone, so we have

V =
1

3
B1h+

1

3
B2h+ · · ·+ 1

3
Bnh

=
1

3
(B1 +B2 + · · ·+Bn)h

=
1

3
Bh.

If the base shape can not be dissected into triangles exactly (maybe it’s a curvy shape like
a circle) then at least we can approximate it with many small triangles. In the limit we still
get V = 1

3Bh.

• What is the volume of a sphere?

We will show that a sphere of radius r has volume 4
3πr

3. Actually, we will show that a

hemisphere of radius r has volume 2
3πr

3.
To do this we will show that the hemisphere has the same volume as a cylinder of height r

and radius r minus a cone. Here is a nice picture from the blog of someone named Zachary
Abel.

The cross section at height h of the cylinder minus cone is a green annulus with outer circle
of radius r and inner circle of radius h. Thus it has area πr2 − πh2 = π(r2 − h2). The cross
section of the hemisphere at height h is a green circle of radius x, hence it has area πx2. But
what is x? Well, the center of the sphere, the center of the green circle, and any point on the
boundary of the green circle form a right triangle:



The Pythagoream Theorem (remember that?) says that h2 + x2 = r2. Therefore the area
of the green circle is πx2 = π(r2 − h2). Since the hemisphere and the cylinder minus cone
have the same cross-sectional areas, Cavalieri’s Principle says that they must have the same
volume. What is that volume?

Well, I don’t yet know the volume of the hemisphere, but I do know that the volume of the
cylinder is (πr2)r = πr3 (it is a prism after all) and the volume of the cone is 1

3(πr2)r = 1
3πr

3.
Therefore the volume of the cylinder minus cone (and hence also the volume of the hemisphere)
is πr3 − 1

3πr
3 = 2

3πr
3. We conclude that the volume of the full sphere is 2(23πr

3) = 4
3πr

3.

• Finally, what is the surface area of a sphere?

Consider a sphere with radius r. Let S be its surface area. To compute S we will approx-
imate the surface by many small triangles and form a tetrahedron over each of these with
vertex at the center of the sphere. Here is another nice picture from Zachary Abel.

Suppose the areas of the triangles are B1, B2, . . . , Bn (where n is very large). Then we have
S ≈ B1 + B2 + · · · + Bn. Let V be the volume of the sphere. Note that each tetrahedron
has height approximately equal to r. Since the tetrahedra approximately fill up the sphere we
have

V ≈ 1

3
B1r +

1

3
B2r + · · ·+ 1

3
Bnr

=
1

3
(B1 +B2 + · · ·+Bn)r

≈ 1

3
Sr.

In the limit this is an equality. On the other hand we alreay know that V = 4
3πr

3. Thus we
conclude that

1

3
Sr =

4

3
πr3

S = 4πr2.

Discussion:

• Are you surprised that the surface area of a sphere is harder to compute than its volume?
Well, it is. Both the volume and the surface area of a sphere were computed by Archimedes
of Syracuse. One can rephrase the result V = 4

3πr
3 by saying that the volume of the sphere

is 2
3 the volume of the smallest cylinder that contains it. Also, the surface area of the sphere



is equal to the surface area of the smallest cylinder that contains it (minus the top and
bottom circles). Apparently, Archimedes was so pleased with these results he requested that
the images of a sphere and a cylinder be placed on his tomb. Cicero reports an expedition
to Syracuse in 75 BC (137 years after Archimedes’ death) during which he found the tomb
abandoned and covered by scrub, but the sphere and cylinder were there and the verses were
still partly legible.

• Here is the shortest Calculus proof I know for the surface area of a sphere of radius r. We
can think of the volume as an infinite sum of disks. The disk at distance x from the center
has area π(r2 − x2). Thus the volume is∫ r

−r
π(r2 − x2) dx = π

[
r2x− 1

3
x3
]r
−r

= π

[
(r3 − 1

3
r3)− (−r3 +

1

3
r3)

]
=

4

3
πr3.

Note that the volume V (r) = 4
3πr

3 is a function of the radius. If we increase the radius by
an infinitesimal amount dr, by how much does the volume increase? We can think of the new
increase in volume dV as a very thin shell of thickness dr. Because the shell is very thin, it
seems plausible to say it has volume S(r)dr, where S(r) is the surface area of the sphere. We
conclude that dV = S(r)dr, and hence

S(r) =
dV

dr
=

4

3
π3r2 = 4πr2.

This proof is short but not very satisfying. I wouldn’t necessarily even believe it if I didn’t
already know the correct answer. The proof we gave above was longer, but I belived every
step because I could see a picture.

So what is the benefit of Calculus to geometry? Good question. What is the 4D “hyper-
volume” of a 4D “hyperball”? In this case we can’t draw a picture, but maybe we can still
use Calculus. [Remark: We can. The hypervolume is 1

2π
2r4.]

• Finally, consider a triangle with angles α, β, γ on the surface of a sphere of radius r. Last
time we discussed Thomas Harriot’s (1603) proof that the area of this triangle is

S

4π
(α+ β + γ − π),

where S is the total surface area of the sphere. Now we can finish the calculuation. Substituting
S = 4πr2 shows that the area of the triangle is

r2(α+ β + γ − π).

If the sphere is very big (r →∞) then locally it looks like a flat plane. (Sometimes we say that
a flat plane is a sphere of radius∞.) Q: How could we possibly get a triangle with finite area
on such a sphere? A: For the area r2(α+ β+ γ− π) to stay finite, the quantity α+ β+ γ− π
must approach zero. That is, the sum of the angles must approach 180◦. This suggest that
Euclidean geometry is a limiting case (as r →∞) of spherical geometry.

By the way, the “surface” of a 4D “hyperball” is a 3D space called a “hypersphere”. Maybe
our universe is a hypersphere. How could we tell? [Answer: If you left the earth travelling in
a straight line, you would eventually end up back where you started. If the distance of the
round trip is 2πr, this means that we live in a hypersphere of radius r. It also means that our
universe is finite with volume 2π2r3.]
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