Book Problems:

- Section 5.2, Exercises 16, 18, 20
- Section 5.3, Exercises 24, 28, 34

Additional Problems:

A.1. Area of a Circle. [2 points] The graph of the function $f(x) = +\sqrt{r^2 - x^2}$ is the upper half of a circle of radius r, hence the area of the full circle is

$$2\int_{-r}^r \sqrt{r^2 - x^2} \, dx.$$

Evaluate the integral. [Hint: First use the "trig substitution" $x = r \sin \theta$ and the trig identity $\sin^2 \theta + \cos^2 \theta = 1$. Then use the trig identity $\cos^2 \theta = (\cos(2\theta) + 1)/2$. Finally, use the substitution $u = 2\theta$. As x goes from -r to r we can take θ from $-\pi/2$ to $\pi/2$, hence u goes from $-\pi$ to π .]