Book Problems:

- Section 5.2, Exercises 16, 18, 20
- Section 5.3, Exercises 24, 28, 34

Additional Problems:

A.1. Area of a Circle. [2 points] The graph of the function $f(x)=+\sqrt{r^{2}-x^{2}}$ is the upper half of a circle of radius r, hence the area of the full circle is

$$
2 \int_{-r}^{r} \sqrt{r^{2}-x^{2}} d x .
$$

Evaluate the integral. [Hint: First use the "trig substitution" $x=r \sin \theta$ and the trig identity $\sin ^{2} \theta+\cos ^{2} \theta=1$. Then use the trig identity $\cos ^{2} \theta=(\cos (2 \theta)+1) / 2$. Finally, use the substitution $u=2 \theta$. As x goes from $-r$ to r we can take θ from $-\pi / 2$ to $\pi / 2$, hence u goes from $-\pi$ to π.]

