2.7.4. Consider a rectangle with length ℓ, width w and area $A=\ell w$:

Given that $d \ell / d t=+8 \mathrm{~cm} / \mathrm{s}$ and $d w / d t=+3 \mathrm{~cm} / \mathrm{s}$ we want to find $d A / d t$. To do this we use the product rule:

$$
\frac{d A}{d t}=\frac{d}{d t}(\ell w)=\ell \cdot \frac{d w}{d t}+w \cdot \frac{d \ell}{d t} .
$$

When $\ell=20$ and $w=10$ we have

$$
\frac{d A}{d t}=(20)(3)+(10)(8)=140 \mathrm{~cm}^{2} / \mathrm{s} .
$$

2.7.6. Consider a sphere with radius r and volume $V=\frac{4}{3} \pi r^{3}$ (picture omitted). Given that $d r / d t=+4 \mathrm{~mm} / \mathrm{s}$ we want to find $d V / d t$. To do this we use the chain rule:

$$
\frac{d V}{d t}=\frac{d}{d t}\left(\frac{4}{3} \pi r^{3}\right)=\frac{4}{3} \pi \frac{d}{d t}\left(r^{3}\right)=\frac{4}{3} \pi\left(3 r^{2} \frac{d r}{d t}\right) .
$$

(Note that the constant $4 \pi / 3$ just comes outside the integral.) When the diameter is 80 we have radius $r=40$ and hence

$$
\frac{d V}{d t}=\frac{4}{3} \pi\left(3 r^{2} \frac{d r}{d t}\right)=\frac{4}{3} \pi \cdot 3(40)^{2}(4) \approx 80424 \mathrm{~mm}^{3} / \mathrm{s} .
$$

2.8.12. Use linear approximation to find $\sqrt[3]{1001}$. Consider the function $f(x)=\sqrt[3]{x}=x^{1 / 3}$ with derivative $f^{\prime}(x)=(1 / 3) x^{-2 / 3}$. When $x \approx 1000$ we have

$$
\begin{aligned}
f(x) & \approx f(1000)+f^{\prime}(1000)(x-1000) \\
x^{1 / 3} & \approx(1000)^{1 / 3}+\frac{1}{3}(1000)^{-2 / 3}(x-1000) \\
x^{1 / 3} & \approx 10+\frac{1}{300}(x-1000) .
\end{aligned}
$$

Substituting $x=1001$ gives

$$
1001^{1 / 3} \approx 10+\frac{1}{300}(1001-1000)=10+\frac{1}{300}=10.0033333333 \cdots
$$

(The correct value is $1001^{1 / 3}=10.003332222839094952 \cdots$.)
2.8.14. Use linear approximation to find $1 / 4.002$. Consider the function $f(x)=1 / x=x^{-1}$ with derivative $f^{\prime}(x)=(-1) x^{-2}=-1 / x^{2}$. When $x \approx 4$ we have

$$
f(x) \approx \underset{1}{f(4)}+f^{\prime}(4)(x-4)
$$

$$
\frac{1}{x} \approx \frac{1}{4}-\frac{1}{4^{2}}(x-4)
$$

Substituting $x=4.002$ gives

$$
\frac{1}{4.002} \approx \frac{1}{4}-\frac{1}{4^{2}}(4.002-4)=\frac{1}{4}-\frac{1}{16}(0.002)=0.250125
$$

(The correct value is $1 / 4.002=0.24987506246876561719 \cdots$.)
2.8.22. The radius of a disk is given as 24 cm with error 0.2 cm .
(a) Use differentials to estimate the error in the calculated area of the disk. The area is $A=\pi r^{2}$ with differential $d A$ given by

$$
\frac{d A}{d r}=\pi(2 r) \quad \rightsquigarrow \quad d A=2 \pi r d r
$$

Substituting $r=24$ and $d r=0.2$ gives

$$
\begin{aligned}
A & =\pi(24)^{2} \approx 1809.56 \\
d A & =2 \pi(24)(0.2) \approx 30.16 .
\end{aligned}
$$

Hence the area of the disk is 1809.56 plus or minus $30.16 \mathrm{~cm}^{2}$.
(b) The percentage error is $30.16 / 1809.56=0.017 \%$.
2.8.24. Use differentials to estimate the amount of paint needed to apply a coat of paint 0.05 cm thick to a hemispherical dome with diameter 50 m .

This is a tricky one. I think it's easier to solve without Calculus.
Solution Without Calculus. Paint is measured by volume. The unpainted hemisphere of radius 25 meters has volume $(2 / 3) \pi r^{3}=(2 / 3) \pi(25)^{3}=32724.923$ meters 3. The painted hemisphere has radius 25.0005 meters (because the paint is 0.5 centimeters, or 0.0005 meters, thick), so the painted hemisphere has volume $(2 / 3) \pi(25.0005)^{3}=32726.887$ meters 3. The difference of these volumes is the volume of the paint:

$$
\text { volume of paint }=32724.887-32726.923=1.967 \text { meters }^{3} \text {. }
$$

That is a lot of paint! Approximately 520 gallons.
Solution With Calculus. The radius is $r=25$. The added paint increases the radius by a tiny amount $d r=0.0005$. The volume of the hemisphere is $V=(2 / 3) \pi r^{3}$. The paint increases this volume by a tiny amount $d V$, where

$$
\frac{d V}{d r}=\frac{d}{d r}\left(\frac{2}{3} \pi r^{3}\right)=\frac{2}{3} \pi\left(3 r^{2}\right) \quad \rightsquigarrow \quad d V=2 \pi r^{2} d r .
$$

Substituting $r=25$ and $d r=0.0005$ gives the approximate volume of paint:

$$
d V \approx 2 \pi(25)^{2}(0.005)=1.963 \text { meters }^{3}
$$

That's very close to the exact answer computed above.
3.3.2. We will compute the first and second derivatives of $f(x)=4 x^{3}+3 x^{2}-6 x+1$ and use this information to sketch the graph. The first derivative is

$$
f^{\prime}(x)=4\left(3 x^{2}\right)+3(2 x)-6(1)=12 x^{2}+6 x-6=6\left(2 x^{2}+x-1\right)=6(x+1)(2 x-1) .
$$

The second derivative is

$$
f^{\prime \prime}(x)=12(2 x)+6(1)=6(4 x+1) .
$$

The first derivative is zero when $x=-1$ or $x=1 / 2$. It is positive (f is increasing) when $x<-1$ or $x>1 / 2$ and negative (f is decreasing) when $-1<x<1 / 2$. The second derivative is zero when $x=-1 / 4$. It is positive (f is concave up) when $x>-1 / 4$ and negative (f is concave down) when $x<-1 / 4$. There is an inflection point at $(1 / 2,-3 / 4)$, a local maximum at $(-1,6)$ and a local minimum at $(-1 / 4,21 / 8)$. Here is a picture (not to scale):

3.3.4. We will compute the first and second derivatives of $f(x)=x /\left(x^{2}+1\right)$ and use this information to sketch the graph. The first derivative is

$$
f^{\prime}(x)=\frac{\left(x^{2}+1\right)(1)-(x)(2 x+0)}{\left(x^{2}+1\right)^{2}}=\frac{-x^{2}+1}{\left(x^{2}+1\right)^{2}}=\frac{(1-x)(1+x)}{\left(x^{2}+1\right)^{2}} .
$$

The second derivative is

$$
f^{\prime \prime}(x)=\frac{\left(x^{2}+1\right)^{2}(-2 x)-\left(-x^{2}+1\right)\left[2\left(x^{2}+1\right)(2 x+0)\right]}{\left(x^{2}+1\right)^{4}}=\cdots=\frac{2 x\left(x^{2}-3\right)}{\left(x^{2}+1\right)^{3}} .
$$

The first derivative is zero when $x=1$ or $x=-1$. It is negative (f is increasing) when $x<-1$ or $x>1$ and negative (f is decreasing) when $-1<x<1$. The second derivative is zero when $x=0$ or $x= \pm 3$. It is positive (f is concave up) when $0<x<-\sqrt{3}$ or $x>\sqrt{3}$ and negative (f is concave down) when $x<-\sqrt{3}$ or $0<x<\sqrt{3}$. There are inflection points when $x=-\sqrt{3}, 0, \sqrt{3}$, a local minimum when $x=-1$ and a local maximum when $x=1$. Here is a picture (not to scale):

3.3.28. We will compute the first and second derivatives of $G(x)=5 x^{2 / 3}-2 x^{5 / 3}$ and use this information to sketch the graph. (Note that this function is only defined when $x \geq 0$.) The first derivative is

$$
G^{\prime}(x)=5 \cdot \frac{2}{3} x^{-1 / 3}-2 \cdot \frac{5}{3} x^{2 / 3}=\cdots=-\frac{10}{3} \cdot \frac{x-1}{x^{1 / 3}} .
$$

The second derivative is

$$
G^{\prime \prime}(x)=5 \cdot \frac{2}{3} \cdot \frac{-1}{3} x^{-4 / 3}-2 \cdot \frac{5}{3} \cdot \frac{2}{3} x^{-1 / 3}=\cdots=-\frac{10}{9} \cdot \frac{2 x+1}{x^{4 / 3}} .
$$

The first derivative is zero when $x=1$. It is positive (G is increasing) when $0<x<1$ and negative (G is decreasing) when $x>1$. Since $x \geq 0$, the second derivative is always negative, hence G is always concave down. There is a local maximum when $x=1$. I guess you could also say there is a local minimum when $x=0$, but that point is a bit strange. The tangent becomes vertical as $x \rightarrow 0^{+}$because $\lim _{x \rightarrow 0^{+}} G^{\prime}(x)=+\infty$. Here is a picture (not to scale):

3.3.30. We will compute the first and second derivatives of $G(x)=x-4 \sqrt{x}$ and use this information to sketch the graph. (Note that this function is only defined when $x \geq 0$.) The first derivative is

$$
G^{\prime}(x)=1-4 \cdot \frac{1}{2 \sqrt{x}}=1-2 x^{-1 / 2} .
$$

The second derivative is

$$
G^{\prime \prime}(x)=0-2 \cdot(-1 / 2) x^{-3 / 2}=\frac{1}{x^{3 / 2}} .
$$

The first derivative is zero when $x=4$. It is positive (G is increasing) when $x>4$ and negative (G is decreasing) when $0<x<4$. Since $x \geq 0$, the second derivative is always positive, hence G is always concave up. There is a local minimum when $x=4$. I guess you could also say there is a local maximum when $x=0$, but that point is a bit strange. The tangent becomes vertical as $x \rightarrow 0^{+}$because $\lim _{x \rightarrow 0^{+}} G^{\prime}(x)=-\infty$. Here is a picture (not to scale):

3.3.34. We will compute the first and second derivatives of $f(x)=\left(x^{2}-4\right) /\left(x^{2}+4\right)$ and use this information to sketch the graph. The first derivative is

$$
f^{\prime}(x)=\frac{\left(x^{2}+4\right)(2 x+0)-\left(x^{2}-4\right)(2 x+0)}{\left(x^{2}+4\right)^{2}}=\cdots=\frac{16 x}{\left(x^{2}+4\right)^{2}} .
$$

The second derivative is

$$
f^{\prime \prime}(x)=\frac{\left(x^{2}+4\right)^{2}(16)-(16 x)\left[2\left(x^{2}+4\right)(2 x+0)\right]}{\left[\left(x^{2}+4\right)^{2}\right]^{2}}=\cdots=\frac{16\left(-3 x^{2}+4\right)}{\left(x^{2}+4\right)^{3}} .
$$

The first derivative is zero when $x=0$. It is negative (f is decreasing) when $x<0$ and positive (f is increasing) when $x>0$. The second derivative is zero when $x= \pm \sqrt{4 / 3}$. It is positive (f is concave up) when $-\sqrt{4 / 3}<x<\sqrt{4 / 3}$ and negative (f is concave down) when $x<-\sqrt{4 / 3}$ or $x>\sqrt{4 / 3}$. There are inflection points when $x= \pm \sqrt{4 / 3}$ and a local minimum when $x=0$. There is a horizontal asymptote at $y=1$ because $\lim _{x \rightarrow \pm \infty} f(x)=1$. Here is a picture (not to scale):

3.5.2. Find two numbers whose difference is 100 and whose product is a minimum. Call the numbers x and y. We are given that $x-y=100$ and we want to minimize the product $P(x, y)=x y$. Since we don't know how to deal with multivariable functions (that is the topic of Calculus 3) we will use the constraint to write $y=x-100$ and hence P is a function of x alone:

$$
P(x)=x y=x(x-100)=x^{2}-100 x .
$$

To minimize P we set the first derivative equal to zero:

$$
\begin{aligned}
P^{\prime}(x) & =0 \\
2 x-100 & =0 \\
x & =50 .
\end{aligned}
$$

We conclude that P is minimized when $x=50$, and hence $y=x-100=50-100=-50$.
3.5.4. The sum of two numbers is 16 . What is the smallest possible value of the sum of their squares? Call the numbers x and y. We are given $x+y=16$ and we want to minimize the function $S(x, y)=x^{2}+y^{2}$. Since we don't know how to deal with multivariable functions we will use the constraint to write $y=16-x$ and hence S is a function of x alone:

$$
S(x)=x^{2}+y^{2}=x^{2}+(16-x)^{2} .
$$

To minize S we set the first derivative equal to zero:

$$
\begin{aligned}
S^{\prime}(x) & =0 \\
2 x+2(16-x)(0-1) & =0 \\
2 x-2(16-x) & =0 \\
2 x-32+2 x & =0 \\
4 x & =32 \\
x & =8 .
\end{aligned}
$$

We conclude that S is maximized when $x=8$, and hence $y=16-8=8$.
3.5.8. Find the dimensions of a rectangle with area $1000 \mathrm{~m}^{2}$ whose perimeter is as small as possible. If ℓ and w are the dimensions of the rectangle then the perimeter is $P=2 \ell+2 w$:

We want to minimize $P(\ell, w)=2 \ell+2 w$ subject to the constraint $\ell w=1000$. First we use this constraint to eliminate w from P :

$$
P(\ell)=2 \ell+2 w=2 \ell+2(1000 / \ell)=2 \ell+2000 / \ell
$$

Then to minimize P we set the first derivative equal to zero:

$$
\begin{aligned}
P^{\prime}(\ell) & =0 \\
2+2000\left(-1 / \ell^{2}\right) & =0
\end{aligned}
$$

$$
\begin{aligned}
-2000 / \ell^{2} & =-2 \\
1 / \ell^{2} & =2 / 2000 \\
\ell^{2} & =1000 \\
\ell & =\sqrt{1000}
\end{aligned}
$$

We conclude that P is maximized when $\ell=\sqrt{1000}$, and hence $w=1000 / \sqrt{1000}=\sqrt{1000}$. In other words, for a given area the perimeter is maximized when the rectangle is a square.
3.5.12. (Oops, this problem was not assigned. So you can call it a practice problem.) A box with a square base and open top must have a volume of $32000 \mathrm{~cm}^{3}$. Find the dimensions of the box that minimize the amount of material used (say, cardboard). Let b be the base and let h be the height of the box. The amount of cardboard is the surface area $A=b^{2}+4 b h$:

In order to minimize A we first eliminate h using the volume constraint:

$$
\begin{aligned}
\text { volume } & =32000 \\
b^{2} h & =32000 \\
h & =32000 / b^{2} .
\end{aligned}
$$

Hence we have $A=b^{2}+4 b h=b^{2}+4 b\left(32000 / b^{2}\right)=b^{2}+128000 / b$. Then to minimize A we set the first derivative equal to zero:

$$
\begin{aligned}
A^{\prime}(b) & =0 \\
2 b+128000\left(-1 / b^{2}\right) & =0 \\
2 b^{3}-128000 & =0 \\
2 b^{3} & =128000 \\
b^{3} & =64000 \\
b & =40 .
\end{aligned}
$$

We conclude that the amount of material is minimized when $b=40$ and $h=32000 / 40^{2}=20$.
3.5.16. Find the point (x, y) on the curve $y=\sqrt{x}$ that is closest to the point $(3,0)$:

The distance between any two points (x, y) and (a, b) is $\sqrt{(x-a)^{2}+(y-b)^{2}}$. In particular, the distance between (x, y) and $(3,0)$ is $D=\sqrt{(x-3)^{2}+(y-0)^{2}}=\sqrt{x^{2}-6 x+9+y^{2}}$. In order to minimize the distance we first use the constraint $y=\sqrt{x}$ to eliminate y from D :

$$
D=\sqrt{x^{2}-6 x+9+y^{2}}=\sqrt{x^{2}-6 x+9+x}=\sqrt{x^{2}-5 x+9} .
$$

Now we set the first derivative equal to zero:

$$
\begin{aligned}
D^{\prime}(x) & =0 \\
\frac{1}{2 \sqrt{x^{2}-5 x+9}}(2 x-5+0) & =0 \\
2 x-5 & =0 \\
x & =5 / 2 .
\end{aligned}
$$

(Here we used the fact that $a / b=0$ implies $a=0$ for any fraction.) We conclude that the distance D is minimized when $x=5 / 2$ and $y=\sqrt{x}=\sqrt{5 / 2}$.
3.6.8. Use Newton's method with initial guess $x_{1}=-1$ to find a root of the equation $x^{7}+4=0$, correct to four decimal places.
We want to solve the equation $f(x)=0$ with $f(x)=x^{7}+4$. Newton's method gives the recursive equation

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{7}+4}{7 x_{n}^{6}} .
$$

Starting from $x_{1}=-1$ we have

n	x_{n}
1	-1.000
2	-1.4286
3	-1.2917
4	-1.2302
5	-1.2193
6	-1.2190
7	-1.2190

3.6.14. Use Newton's method to find the positive root of $3 \sin x=x$, correct to six decimal places. We want to solve the equation $f(x)=0$ where $f(x)=3 \sin x-x$. Newton's method
gives the recursive equation

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{3 \sin \left(x_{n}\right)-x_{n}}{3 \cos \left(x_{n}\right)-1} .
$$

In this case the initial guess $x_{1}=1$ leads to the wrong solution, so we need to be more careful. After looking at the graph on Desmos I see that the solution is close to 2 , so I'll guess $x_{1}=2$. Then we have

n	x_{n}
1	2.000000
2	2.323732
3	2.279595
4	2.278863
5	2.278863

A.1. The Babylonian Algorithm for Square Roots.

(a) In order to compute \sqrt{a} we will solve the equation $f(x)=0$ where $f(x)=x^{2}-a$. Newton's method gives the recursive equation

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
& =x_{n}-\frac{x_{n}^{2}-a}{2 x_{n}} \\
& =\frac{2 x_{n}^{2}-\left(x_{n}^{2}-a\right)}{2 x_{n}} \\
& =\frac{x_{n}^{2}+a}{2 x_{n}} \\
& =\frac{1}{2}\left(\frac{x_{n}^{2}+a}{x_{n}}\right) \\
& =\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right) .
\end{aligned}
$$

This is called the Babylonian algorithm.
(b) In order to compute $\sqrt{3}$ we let $a=3$. Then starting with the guess $x_{1}=1$ we obtain

n	x_{n}
1	1.000000
2	2.000000
3	1.750000
4	1.732143
5	1.732051
6	1.732051

