
Math 161 Summer 2023
Homework 3 Solutions Drew Armstrong

2.7.4. Consider a rectangle with length `, width w and area A = `w:

Given that d`/dt = +8 cm/s and dw/dt = +3 cm/s we want to find dA/dt. To do this we use
the product rule:

dA

dt
=

d

dt
(`w) = ` · dw

dt
+ w · d`

dt
.

When ` = 20 and w = 10 we have

dA

dt
= (20)(3) + (10)(8) = 140 cm2/s.

2.7.6. Consider a sphere with radius r and volume V = 4
3πr

3 (picture omitted). Given that
dr/dt = +4 mm/s we want to find dV/dt. To do this we use the chain rule:

dV

dt
=

d

dt

(
4

3
πr3
)

=
4

3
π
d

dt
(r3) =

4

3
π

(
3r2

dr

dt

)
.

(Note that the constant 4π/3 just comes outside the integral.) When the diameter is 80 we
have radius r = 40 and hence

dV

dt
=

4

3
π

(
3r2

dr

dt

)
=

4

3
π · 3(40)2(4) ≈ 80424 mm3/s.

2.8.12. Use linear approximation to find 3
√

1001. Consider the function f(x) = 3
√
x = x1/3

with derivative f ′(x) = (1/3)x−2/3. When x ≈ 1000 we have

f(x) ≈ f(1000) + f ′(1000)(x− 1000)

x1/3 ≈ (1000)1/3 +
1

3
(1000)−2/3(x− 1000)

x1/3 ≈ 10 +
1

300
(x− 1000).

Substituting x = 1001 gives

10011/3 ≈ 10 +
1

300
(1001− 1000) = 10 +

1

300
= 10.0033333333 · · · .

(The correct value is 10011/3 = 10.003332222839094952 · · · .)

2.8.14. Use linear approximation to find 1/4.002. Consider the function f(x) = 1/x = x−1

with derivative f ′(x) = (−1)x−2 = −1/x2. When x ≈ 4 we have

f(x) ≈ f(4) + f ′(4)(x− 4)
1
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1

x
≈ 1

4
− 1

42
(x− 4).

Substituting x = 4.002 gives

1

4.002
≈ 1

4
− 1

42
(4.002− 4) =

1

4
− 1

16
(0.002) = 0.250125.

(The correct value is 1/4.002 = 0.24987506246876561719 · · · .)

2.8.22. The radius of a disk is given as 24 cm with error 0.2 cm.

(a) Use differentials to estimate the error in the calculated area of the disk. The area is
A = πr2 with differential dA given by

dA

dr
= π(2r)  dA = 2πrdr.

Substituting r = 24 and dr = 0.2 gives

A = π(24)2 ≈ 1809.56,

dA = 2π(24)(0.2) ≈ 30.16.

Hence the area of the disk is 1809.56 plus or minus 30.16 cm2.
(b) The percentage error is 30.16/1809.56 = 0.017%.

2.8.24. Use differentials to estimate the amount of paint needed to apply a coat of paint 0.05
cm thick to a hemispherical dome with diameter 50 m.

This is a tricky one. I think it’s easier to solve without Calculus.

Solution Without Calculus. Paint is measured by volume. The unpainted hemisphere of radius
25 meters has volume (2/3)πr3 = (2/3)π(25)3 = 32724.923 meters3. The painted hemisphere
has radius 25.0005 meters (because the paint is 0.5 centimeters, or 0.0005 meters, thick), so
the painted hemisphere has volume (2/3)π(25.0005)3 = 32726.887 meters3. The difference of
these volumes is the volume of the paint:

volume of paint = 32724.887− 32726.923 = 1.967 meters3.

That is a lot of paint! Approximately 520 gallons.

Solution With Calculus. The radius is r = 25. The added paint increases the radius by a tiny
amount dr = 0.0005. The volume of the hemisphere is V = (2/3)πr3. The paint increases this
volume by a tiny amount dV , where

dV

dr
=

d

dr

(
2

3
πr3
)

=
2

3
π(3r2)  dV = 2πr2dr.

Substituting r = 25 and dr = 0.0005 gives the approximate volume of paint:

dV ≈ 2π(25)2(0.005) = 1.963 meters3.

That’s very close to the exact answer computed above.

3.3.2. We will compute the first and second derivatives of f(x) = 4x3 + 3x2 − 6x+ 1 and use
this information to sketch the graph. The first derivative is

f ′(x) = 4(3x2) + 3(2x)− 6(1) = 12x2 + 6x− 6 = 6(2x2 + x− 1) = 6(x+ 1)(2x− 1).

The second derivative is
f ′′(x) = 12(2x) + 6(1) = 6(4x+ 1).
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The first derivative is zero when x = −1 or x = 1/2. It is positive (f is increasing) when
x < −1 or x > 1/2 and negative (f is decreasing) when −1 < x < 1/2. The second derivative
is zero when x = −1/4. It is positive (f is concave up) when x > −1/4 and negative (f is
concave down) when x < −1/4. There is an inflection point at (1/2,−3/4), a local maximum
at (−1, 6) and a local minimum at (−1/4, 21/8). Here is a picture (not to scale):

3.3.4. We will compute the first and second derivatives of f(x) = x/(x2 + 1) and use this
information to sketch the graph. The first derivative is

f ′(x) =
(x2 + 1)(1)− (x)(2x+ 0)

(x2 + 1)2
=
−x2 + 1

(x2 + 1)2
=

(1− x)(1 + x)

(x2 + 1)2
.

The second derivative is

f ′′(x) =
(x2 + 1)2(−2x)− (−x2 + 1)[2(x2 + 1)(2x+ 0)]

(x2 + 1)4
= · · · = 2x(x2 − 3)

(x2 + 1)3
.

The first derivative is zero when x = 1 or x = −1. It is negative (f is increasing) when x < −1
or x > 1 and negative (f is decreasing) when −1 < x < 1. The second derivative is zero
when x = 0 or x = ±3. It is positive (f is concave up) when 0 < x < −

√
3 or x >

√
3 and

negative (f is concave down) when x < −
√

3 or 0 < x <
√

3. There are inflection points when
x = −

√
3, 0,
√

3, a local minimum when x = −1 and a local maximum when x = 1. Here is a
picture (not to scale):
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3.3.28. We will compute the first and second derivatives of G(x) = 5x2/3−2x5/3 and use this
information to sketch the graph. (Note that this function is only defined when x ≥ 0.) The
first derivative is

G′(x) = 5 · 2

3
x−1/3 − 2 · 5

3
x2/3 = · · · = −10

3
· x− 1

x1/3
.

The second derivative is

G′′(x) = 5 · 2

3
· −1

3
x−4/3 − 2 · 5

3
· 2

3
x−1/3 = · · · = −10

9
· 2x+ 1

x4/3
.

The first derivative is zero when x = 1. It is positive (G is increasing) when 0 < x < 1 and
negative (G is decreasing) when x > 1. Since x ≥ 0, the second derivative is always negative,
hence G is always concave down. There is a local maximum when x = 1. I guess you could
also say there is a local minimum when x = 0, but that point is a bit strange. The tangent
becomes vertical as x→ 0+ because limx→0+ G

′(x) = +∞. Here is a picture (not to scale):

3.3.30. We will compute the first and second derivatives of G(x) = x − 4
√
x and use this

information to sketch the graph. (Note that this function is only defined when x ≥ 0.) The
first derivative is

G′(x) = 1− 4 · 1

2
√
x

= 1− 2x−1/2.
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The second derivative is

G′′(x) = 0− 2 · (−1/2)x−3/2 =
1

x3/2
.

The first derivative is zero when x = 4. It is positive (G is increasing) when x > 4 and negative
(G is decreasing) when 0 < x < 4. Since x ≥ 0, the second derivative is always positive, hence
G is always concave up. There is a local minimum when x = 4. I guess you could also say
there is a local maximum when x = 0, but that point is a bit strange. The tangent becomes
vertical as x→ 0+ because limx→0+ G

′(x) = −∞. Here is a picture (not to scale):

3.3.34. We will compute the first and second derivatives of f(x) = (x2 − 4)/(x2 + 4) and use
this information to sketch the graph. The first derivative is

f ′(x) =
(x2 + 4)(2x+ 0)− (x2 − 4)(2x+ 0)

(x2 + 4)2
= · · · = 16x

(x2 + 4)2
.

The second derivative is

f ′′(x) =
(x2 + 4)2(16)− (16x)[2(x2 + 4)(2x+ 0)]

[(x2 + 4)2]2
= · · · = 16(−3x2 + 4)

(x2 + 4)3
.

The first derivative is zero when x = 0. It is negative (f is decreasing) when x < 0 and

positive (f is increasing) when x > 0. The second derivative is zero when x = ±
√

4/3. It is

positive (f is concave up) when −
√

4/3 < x <
√

4/3 and negative (f is concave down) when

x < −
√

4/3 or x >
√

4/3. There are inflection points when x = ±
√

4/3 and a local minimum
when x = 0. There is a horizontal asymptote at y = 1 because limx→±∞ f(x) = 1. Here is a
picture (not to scale):
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3.5.2. Find two numbers whose difference is 100 and whose product is a minimum. Call
the numbers x and y. We are given that x − y = 100 and we want to minimize the product
P (x, y) = xy. Since we don’t know how to deal with multivariable functions (that is the topic
of Calculus 3) we will use the constraint to write y = x− 100 and hence P is a function of x
alone:

P (x) = xy = x(x− 100) = x2 − 100x.

To minimize P we set the first derivative equal to zero:

P ′(x) = 0

2x− 100 = 0

x = 50.

We conclude that P is minimized when x = 50, and hence y = x− 100 = 50− 100 = −50.

3.5.4. The sum of two numbers is 16. What is the smallest possible value of the sum of their
squares? Call the numbers x and y. We are given x + y = 16 and we want to minimize the
function S(x, y) = x2 + y2. Since we don’t know how to deal with multivariable functions we
will use the constraint to write y = 16− x and hence S is a function of x alone:

S(x) = x2 + y2 = x2 + (16− x)2.

To minize S we set the first derivative equal to zero:

S′(x) = 0

2x+ 2(16− x)(0− 1) = 0

2x− 2(16− x) = 0

2x− 32 + 2x = 0

4x = 32

x = 8.

We conclude that S is maximized when x = 8, and hence y = 16− 8 = 8.

3.5.8. Find the dimensions of a rectangle with area 1000 m2 whose perimeter is as small as
possible. If ` and w are the dimensions of the rectangle then the perimeter is P = 2`+ 2w:

We want to minimize P (`, w) = 2` + 2w subject to the constraint `w = 1000. First we use
this constraint to eliminate w from P :

P (`) = 2`+ 2w = 2`+ 2(1000/`) = 2`+ 2000/`.

Then to minimize P we set the first derivative equal to zero:

P ′(`) = 0

2 + 2000(−1/`2) = 0
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−2000/`2 = −2

1/`2 = 2/2000

`2 = 1000

` =
√

1000.

We conclude that P is maximized when ` =
√

1000, and hence w = 1000/
√

1000 =
√

1000. In
other words, for a given area the perimeter is maximized when the rectangle is a square.

3.5.12. (Oops, this problem was not assigned. So you can call it a practice problem.) A box
with a square base and open top must have a volume of 32000 cm3. Find the dimensions of
the box that minimize the amount of material used (say, cardboard). Let b be the base and
let h be the height of the box. The amount of cardboard is the surface area A = b2 + 4bh:

In order to minimize A we first eliminate h using the volume constraint:

volume = 32000

b2h = 32000

h = 32000/b2.

Hence we have A = b2 + 4bh = b2 + 4b(32000/b2) = b2 + 128000/b. Then to minimize A we
set the first derivative equal to zero:

A′(b) = 0

2b+ 128000(−1/b2) = 0

2b3 − 128000 = 0

2b3 = 128000

b3 = 64000

b = 40.

We conclude that the amount of material is minimized when b = 40 and h = 32000/402 = 20.

3.5.16. Find the point (x, y) on the curve y =
√
x that is closest to the point (3, 0):
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The distance between any two points (x, y) and (a, b) is
√

(x− a)2 + (y − b)2. In particular,

the distance between (x, y) and (3, 0) is D =
√

(x− 3)2 + (y − 0)2 =
√
x2 − 6x+ 9 + y2. In

order to minimize the distance we first use the constraint y =
√
x to eliminate y from D:

D =
√
x2 − 6x+ 9 + y2 =

√
x2 − 6x+ 9 + x =

√
x2 − 5x+ 9.

Now we set the first derivative equal to zero:

D′(x) = 0

1

2
√
x2 − 5x+ 9

(2x− 5 + 0) = 0

2x− 5 = 0

x = 5/2.

(Here we used the fact that a/b = 0 implies a = 0 for any fraction.) We conclude that the

distance D is minimized when x = 5/2 and y =
√
x =

√
5/2.

3.6.8. Use Newton’s method with initial guess x1 = −1 to find a root of the equation
x7 + 4 = 0, correct to four decimal places.
We want to solve the equation f(x) = 0 with f(x) = x7 + 4. Newton’s method gives the
recursive equation

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

x7n + 4

7x6n
.

Starting from x1 = −1 we have

n xn

1 −1.000
2 −1.4286
3 −1.2917
4 −1.2302
5 −1.2193
6 −1.2190
7 −1.2190

3.6.14. Use Newton’s method to find the positive root of 3 sinx = x, correct to six decimal
places. We want to solve the equation f(x) = 0 where f(x) = 3 sinx − x. Newton’s method
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gives the recursive equation

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

3 sin(xn)− xn
3 cos(xn)− 1

.

In this case the initial guess x1 = 1 leads to the wrong solution, so we need to be more careful.
After looking at the graph on Desmos I see that the solution is close to 2, so I’ll guess x1 = 2.
Then we have

n xn

1 2.000000
2 2.323732
3 2.279595
4 2.278863
5 2.278863

A.1. The Babylonian Algorithm for Square Roots.

(a) In order to compute
√
a we will solve the equation f(x) = 0 where f(x) = x2 − a.

Newton’s method gives the recursive equation

xn+1 = xn −
f(xn)

f ′(xn)

= xn −
x2n − a

2xn

=
2x2n − (x2n − a)

2xn

=
x2n + a

2xn

=
1

2

(
x2n + a

xn

)
=

1

2

(
xn +

a

xn

)
.

This is called the Babylonian algorithm.

(b) In order to compute
√

3 we let a = 3. Then starting with the guess x1 = 1 we obtain

n xn

1 1.000000
2 2.000000
3 1.750000
4 1.732143
5 1.732051
6 1.732051


