1. The area A of a square is increasing at a constant rate of $1 \mathrm{~cm}^{2} / \mathrm{sec}$. At what rate is the side length increasing when $A=4 \mathrm{~cm}^{2}$?

Let ℓ be the side length of the square, so that $A=\ell^{2}$. Using the chain rule we have

$$
\frac{d A}{d t}=2 \ell \cdot \frac{d \ell}{d t} \quad \rightsquigarrow \quad \frac{d \ell}{d t}=\frac{1}{2 \ell} \cdot \frac{d A}{d t}=\frac{1}{2 \ell} \cdot(1)=\frac{1}{2 \ell} .
$$

When $A=4$ then we have $\ell=\sqrt{4}=2$ and hence

$$
\frac{d \ell}{d t}=\frac{1}{2(2)}=\frac{1}{4} \mathrm{~cm} / \mathrm{sec} .
$$

2. Use linear approximation to estimate the value of $\sqrt{9.06}$.

For any differentiable function $f(x)$ and number a we have

$$
x \approx a \quad \rightsquigarrow \quad f(x) \approx f(a)+f^{\prime}(a)(x-a) .
$$

Taking $f(x)=\sqrt{x}$ and $a=9$ gives

$$
x \approx 9 \quad \rightsquigarrow \quad \sqrt{x} \approx \sqrt{9}+\frac{1}{2 \sqrt{9}}(x-9)=3+\frac{1}{6}(x-9) .
$$

Since $x=9.06$ is close to 9 , this implies that

$$
\sqrt{9.06} \approx 3+\frac{1}{6}(9.06-9)=3+\frac{1}{6}(0.06)=3.01 .
$$

3. The radius of a disk is measured to be 5 cm with a maximum error of 0.1 cm . What is the maximum error in the computed area of the disk?

Let r be the radius of the disk, so the area of the disk is $A=\pi r^{2}$. We are given that $r=5$ and $d r=0.1$, which implies that

$$
d A=2 \pi r d r=2 \pi(5)(0.1)=\pi
$$

Remark: Since $A=\pi(5)^{2}=25 \pi$ this gives a percentage error of $\pi /(25 \pi)=1 / 25=4 \%$. You were not asked to compute this.
4. Find the point on the line $2 x+y=1$ that is closest to the point $(0,0)$. Hint: The distance between $(0,0)$ and a general point (x, y) is $\sqrt{x^{2}+y^{2}}$.

We want to minimize the distance function $D(x, y)=\sqrt{x^{2}+y^{2}}$ subject to the constraint $2 x+y=1$. First we use the constraint equation $y=1-2 x$ to eliminate y from D :

$$
D(x)=\sqrt{x^{2}+(1-2 x)^{2}} .
$$

Then we set the derivative equal to zero:

$$
\begin{aligned}
D^{\prime}(x) & =0 \\
\frac{1}{2 \sqrt{x^{2}+(1-2 x)^{2}}}[2 x+2(1-2 x)(-2)] & =0 \\
2 x+2(1-2 x)(-2) & =0
\end{aligned}
$$

$$
\begin{aligned}
2 x-4+8 x & =0 \\
10 x-4 & =0 \\
x & =4 / 10 \\
x & =2 / 5, \\
y & =1-2(2 / 5)=1 / 5 .
\end{aligned}
$$

Thus $(x, y)=(2 / 5,1 / 5)$ is the desired point. Picture:

5. What is the recursive equation that Newton's method will use to compute $\sqrt{5}$?

To solve the equation $f(x)=0$, Newton's method uses the recursive equation

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

In our case we wish to solve $f(x)=0$ where $f(x)=x^{2}-5$, so we will use

$$
x_{n+1}=x_{n}-\frac{x_{n}^{2}-5}{2 x_{n}}
$$

Remark: This formula can be rearranged to give the "Babylonian algorithm formula":

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{5}{x_{n}}\right)
$$

