1. The area A of a square is increasing at a constant rate of $1 \text{ cm}^2/\text{sec.}$ At what rate is the side length increasing when $A = 4 \text{ cm}^2$?

Let ℓ be the side length of the square, so that $A = \ell^2$. Using the chain rule we have

$$\frac{dA}{dt} = 2\ell \cdot \frac{d\ell}{dt} \quad \rightsquigarrow \quad \frac{d\ell}{dt} = \frac{1}{2\ell} \cdot \frac{dA}{dt} = \frac{1}{2\ell} \cdot (1) = \frac{1}{2\ell}$$

When A = 4 then we have $\ell = \sqrt{4} = 2$ and hence

$$\frac{d\ell}{dt} = \frac{1}{2(2)} = \frac{1}{4}$$
 cm/sec.

2. Use linear approximation to estimate the value of $\sqrt{9.06}$.

For any differentiable function f(x) and number a we have

$$x \approx a \quad \rightsquigarrow \quad f(x) \approx f(a) + f'(a)(x-a).$$

Taking $f(x) = \sqrt{x}$ and a = 9 gives

$$x \approx 9 \quad \rightsquigarrow \quad \sqrt{x} \approx \sqrt{9} + \frac{1}{2\sqrt{9}}(x-9) = 3 + \frac{1}{6}(x-9).$$

Since x = 9.06 is close to 9, this implies that

$$\sqrt{9.06} \approx 3 + \frac{1}{6}(9.06 - 9) = 3 + \frac{1}{6}(0.06) = 3.01.$$

3. The radius of a disk is measured to be 5 cm with a maximum error of 0.1 cm. What is the maximum error in the computed area of the disk?

Let r be the radius of the disk, so the area of the disk is $A = \pi r^2$. We are given that r = 5 and dr = 0.1, which implies that

$$dA = 2\pi r \, dr = 2\pi(5)(0.1) = \pi.$$

Remark: Since $A = \pi(5)^2 = 25\pi$ this gives a percentage error of $\pi/(25\pi) = 1/25 = 4\%$. You were not asked to compute this.

4. Find the point on the line 2x + y = 1 that is closest to the point (0,0). Hint: The distance between (0,0) and a general point (x,y) is $\sqrt{x^2 + y^2}$.

We want to minimize the distance function $D(x, y) = \sqrt{x^2 + y^2}$ subject to the constraint 2x + y = 1. First we use the constraint equation y = 1 - 2x to eliminate y from D:

$$D(x) = \sqrt{x^2 + (1 - 2x)^2}$$

Then we set the derivative equal to zero:

$$D'(x) = 0$$

$$\frac{1}{2\sqrt{x^2 + (1 - 2x)^2}} [2x + 2(1 - 2x)(-2)] = 0$$

$$2x + 2(1 - 2x)(-2) = 0$$

$$2x - 4 + 8x = 0$$

$$10x - 4 = 0$$

$$x = 4/10$$

$$x = 2/5,$$

$$y = 1 - 2(2/5) = 1/5.$$

Thus (x, y) = (2/5, 1/5) is the desired point. Picture:

5. What is the recursive equation that Newton's method will use to compute $\sqrt{5}$? To solve the equation f(x) = 0, Newton's method uses the recursive equation

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

In our case we wish to solve f(x) = 0 where $f(x) = x^2 - 5$, so we will use

$$x_{n+1} = x_n - \frac{x_n^2 - 5}{2x_n}.$$

Remark: This formula can be rearranged to give the "Babylonian algorithm formula":

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{5}{x_n} \right)$$