
Math 161 Summer 2015
Homework 4 Solutions Drew Armstrong

Book Problems:

• Chap 3.7 Exercises 2, 4, 14
• Chap 4.1 Exercises 6
• Chap 4.2 Exercises 30, 38, 42
• Chap 4.3 Exercises 2, 6, 10, 14
• Chap 4.4 Exercises 6, 10

Solutions:

3.7.2. Find the most general antiderivative of f(x) = 8x9 − 3x6 + 12x3.

Recall that
∫
xp dx = 1

p+1x
p+1 for all p 6= −1. Thus we have∫

f(x) dx =

∫
(8x9 − 3x6 + 12x3) dx

= 8

∫
x9 dx− 3

∫
x6 dx+ 12

∫
x3 dx

= 8
1

10
x10 − 3

1

7
x7 + 12

1

4
x4 + C,

where C is an arbitrary constant.

3.7.4. Find the most general antiderivative of f(x) =
3
√
x2 + x

√
x.

First we write f(x) = (x2)1/3 + x1 · x1/2 = x2/3 + x3/2. Then we have∫
f(x) dx =

∫
(x2/3 + x3/2) dx

=

∫
x2/3 dx+

∫
x3/2 dx

=
1

5/3
x5/3 +

1

5/2
x5/2 + C

=
3

5
x5/3 +

2

5
x5/2 + C,

where C is an arbitrary constant.

3.7.14. Find the most general antiderivative of f(θ) = 6 θ2 − 7 sec2 θ.

First recall that d
dθ tan θ = sec2 θ. Thus we have∫

f(θ) dθ =

∫
(6 θ2 − 7 sec2 θ) dθ

= 6

∫
θ2 dθ − 7

∫
sec2 θ dθ

= 6
1

3
θ3 − 7 tan θ + C,

where C is an arbitrary constant.



4.1.6. Graph the function f(x) = 1/(1 + x2) for −2 ≤ x ≤ 2. Estimate the area under the
graph by using four rectangles with left endoints, right entpoints, and midpoints. Then do
the same with eight rectangles.

Here’s the graph of f(x) from x = −2 to x = 2:

To approximate the area with four rectangles we let n = 4 so that ∆x = (2− (−2))/4 = 1
and xi = −2 + i · ∆x = −2 + i. The approximations using right hand endpoints, left hand
endpoints, and midpoints are

R4 =
n∑
i=1

f(xi) ·∆x = f(−1) + f(0) + f(1) + f(2) = 2.2

L4 =
n∑
i=1

f(xi−1) ·∆x = f(−2) + f(−1) + f(0) + f(1) = 2.2

M4 =
n∑
i=1

f

(
xi−1 + xi

2

)
·∆x = f(−1.5) + f(−0.5) + f(0.5) + f(1.5) = 2.215

Here are the pictures:

To approximate the area with eight rectangles we let n = 8 so that ∆x = (2−(−2))/8 = 1/2
and xi = −2 + i ·∆x = −2 + i/2. The approximations using right hand endpoints, left hand
endpoints, and midpoints are

R8 =
n∑
i=1

f(xi) ·∆x

= f(−3/2)
1

2
+ f(−1)

1

2
+ f(−1/2)

1

2
+ f(0)

1

2
+ f(1/2)

1

2
+ f(1)

1

2
+ f(3/2)

1

2
+ f(2)

1

2
= 2.208

L8 =
n∑
i=1

f(xi−1) ·∆x



= f(−2)
1

2
+ f(−3/2)

1

2
+ f(−1)

1

2
+ f(−1/2)

1

2
+ f(0)

1

2
+ f(1/2)

1

2
+ f(1)

1

2
+ f(3/2)

1

2
= 2.208

M8 =
n∑
i=1

f

(
xi−1 + xi

2

)
·∆x

= f(−7/4)
1

2
+ f(−5/4)

1

2
+ f(−3/4)

1

2
+ f(−1/4)

1

2
+ f(1/4)

1

2
+ f(3/4)

1

2
+ f(5/4)

1

2
+ f(7/4)

1

2
= 2.218

And here are the pictures:

We weren’t asked for it, but to compute the exact area under the graph we let n be
arbitrary so that ∆x = (2− (−2))/n = 4/n and xi = −2 + i ·∆x = −2 + 4i/n. Then the area
under the graph is defined as∫ 2

−2

1

1 + x2
dx = lim

n→∞

[
n∑
i=1

1

1 + (4i/n)2
· 4

n

]
= lim

n→∞

[
n∑
i=1

4n

n2 + 16i2

]
.

We have no idea how to compute this limit so it doesn’t help. However, we will see next
week that the antiderivative of 1/(1 + x2) is arctan(x), and then we can use the Fundamental
Theorem of Calculus to compute∫ 2

−2

1

1 + x2
dx = arctan(2)− arctan(−2) = 2.214.

Stay tuned.

4.2.30. The black line in the picture below is the graph of g(x). Compute the integrals∫ 2
0 g(x) dx,

∫ 6
2 g(x) dx, and

∫ 7
0 g(x) dx.



•
∫ 2
0 g(x) dx is the area of the pink triangle on the left, so∫ 2

0
g(x) dx =

2 · 4
2

= 4.

•
∫ 6
2 g(x) dx is the negative of the area of the blue semicircle, so∫ 6

2
g(x) dx = −π · 2

2

2
= −6.28.

•
∫ 7
0 g(x) dx is the sum of the areas of the two pink triangles, minus the area of the

blue semicircle, so∫ 7

0
g(x) dx =

2 · 4
2

+
1 · 1

2
− π · 22

2
= 4 +

1

2
− 6.28 = −1.78.

4.2.38. Given that
∫ 1
0 3x
√
x2 + 4 dx = 5

√
5− 8, what is

∫ 0
1 3u
√
u2 + 4 du?

This is pretty much a trick question. Your eyes may get confused by all the symbols, but
there’s really nothing to it. First we switch the limits of integration (which multiplies the
result by −1) and then we rename the “dummy variable” from u to x (which doesn’t do
anything) to get ∫ 0

1
3u
√
u2 + 4 du = −

∫ 1

0
3u
√
u2 + 4 du

= −
∫ 1

0
3x
√
x2 + 4 dx

= −(5
√

5− 8).

4.2.42. Find
∫ 5
0 f(x) dx if f(x) =

{
3 for x < 3

x for x ≥ 3
.

There are two ways to do this problem. The first way is to draw the graph. Here it is:

Note that the area below the graph from x = 0 to x = 5 breaks into a rectangle of width 5
and height 3, and a triangle of width 2 and height 2. Therefore,∫ 5

0
f(x) dx = 5 · 3 +

2 · 2
2

= 15 + 2 = 17.



The other way to do it is to use the Fundamental Theorem of Calculus. To do this we first
break up the interval at x = 3. From x = 0 to x = 3 we have f(x) = 3 and from x = 3 to
x = 5 we have f(x) = x. Hence∫ 5

0
f(x) dx =

∫ 3

0
f(x) dx+

∫ 5

3
f(x) dx

=

∫ 3

0
3 dx+

∫ 5

3
x dx

= [3x]x=3
x=0 +

[
x2

2

]x=5

x=3

= [3(3)− 3(0)] +

[
52

2
− 32

2

]
= 9 + 8

= 17.

This calculation divided up the pink region into a 3 by 3 square (with area 9) from x = 0 to
x = 3 and a trapezoid (with area 8) from x = 3 to x = 5.

Of course, both methods give the same anwer. Which method do you prefer?

4.3.2. Evaluate

∫ 2

1
(4x3 − 3x2 + 2x) dx.

Let f(x) = 4x3 − 3x2 + 2x. One particular antiderivative of this is

F (x) = 4
1

4
x4 − 3

1

3
x3 + 2

1

2
x2 = x4 − x3 + x2.

Then the F.T.C. gives∫ 2

1
(4x3 − 3x2 + 2x) dx =

∫ 2

1
f(x) dx

= F (2)− F (1)

= (24 − 23 + 22)− (14 − 13 + 12)

= (16− 8 + 4)− (1− 1 + 1)

= 12− 1

= 11.

4.3.6. Evaluate

∫ 1

−1
t(1− t)2 dt.

Let f(t) = t(1− t)2 and expand to get f(t) = t(1− 2t+ t2) = t− 2t2 + t3. One particular
antiderivative of this is

F (t) =
1

2
t2 − 2

1

3
t3 +

1

4
t4.

Then the F.T.C. gives∫ 1

−1
t(1− t)2 dt =

∫ 1

−1
f(t) dt

= F (1)− F (−1)



=

(
1

2
12 − 2

3
13 +

1

4
14
)
−
(

1

2
(−1)2 − 2

3
(−1)3 +

1

4
(−1)4

)
=

(
1

2
− 2

3
+

1

4

)
−
(

1

2
+

2

3
+

1

4

)
=

1

12
− 17

12

= −16

12

= −4

3
.

4.3.10. Evaluate

∫ 2

1

(
x+

1

x

)2

dx.

Let f(x) =
(
x+ 1

x

)2
and expand to get f(x) = x2 + 2 + x−2. One particular antiderivative

of this is

F (x) =
1

3
x3 + 2x+

1

−1
x−1.

Then the F.T.C. gives∫ 2

1

(
x+

1

x

)2

dx =

∫ 2

1
f(x) dx

= F (2)− F (1)

=

(
23

3
+ 2(2)− (2)−1

)
−
(

1

3
+ 2− 1

)
=

37

6
− 4

3

=
29

6
.

4.3.14. Evaluate

∫ 9

1

3x− 2√
x

dx.

Let f(x) = 3x−2√
x

. We can rewrite this as f(x) = 3x√
x
− 2√

x
= 3x1/2− 2x−1/2. One particular

antiderivative of this is

F (x) = 3
1

3/2
x3/2 − 2

1

1/2
x1/2 = 3

2

3
x3/2 − 2

2

1
x1/2 = 2x3/2 − 4x1/2.

Then the F.T.C. gives∫ 9

1

3x− 2√
x

dx =

∫ 9

1
f(x) dx

= F (9)− F (1)

=
(

2(9)3/2 − 4(9)1/2
)
−
(

2(1)3/2 − 4(1)1/2
)

= (2 · 27− 4 · 3)− (2− 4)

= 42− (−2)

= 44.



4.4.6. Use Part 1 of the R.T.C. to find the derivative of g(x) =
∫ x
1 (2 + t4)5 dt.

This is one of those trick questions that looks way harder than it is. If we let f(x) = (2+x4)5

then g(x) =
∫ x
1 f(t) dt and Part 1 of the F.T.C. says

g′(x) =
d

dx

∫ x

1
f(t) dt = f(x) = (2 + x4)5.

There’s nothing else to say.

4.4.10. Use Part 1 of the F.T.C. to find the derivative of h(x) =
∫ x2
0

√
1 + r3 dr.

This one is slightly tricker, but it’s still way easier than it looks. Let f(x) =
√

1 + x3 so that

h(x) =
∫ x2
0 f(r) dr. Now before we apply Part 1 of the F.T.C. we have to do something about

the x2. We can take care of it by making the substitution u = x2 to get h(x) =
∫ u
0 f(r) dr.

Then Part 1 of the F.T.C. says

dh

du
=

d

du

∫ u

0
f(r) dr = f(u) =

√
1 + u3 =

√
1 + x6.

But that’s not exactly what was asked for. We want h′(x) = dh/dx. For this we use the Chain
Rule to get

dh

dx
=
dh

du
· du
dx

=
√

1 + x6 · (2x).

[Remark: Problems like 4.4.6 and 4.4.10 are deliberately trying to confuse you. This is very
valuable for the learning process, so I think they’re good homework problems. However, I will
never ask a problem like this on an exam because exams are not for learning.]


