Spacetime Intrinsic Flat Convergence

Christina Sormani (CUNYGC and Lehman College)

joint work with Carlos Vega (SUNY Binghamton)
and Anna Sakovich (Uppsala University Sweden)

A Celebration of Mathematical Relativity
in Miami, Dec 14-16,2018



Thank You for the Opportunity to Speak

I've known Greg for many years, since | was a doctoral student
working on Riemannian Geometry in the 1990's.

| am particularly grateful to Greg and to Jim, Gerhardt, Rick and
Piotr for inviting me to serve as a visiting research professor at
MSRI in 2013. That was a career altering opportunity for me.

All the work | am presenting here is a direct result of the time |
spent there as | met both my collaborators, Carlos Vega and Anna
Sakovich, at MSRI.



Thank You for the Opportunity to Speak

I've known Greg for many years, since | was a doctoral student
working on Riemannian Geometry in the 1990's.

| am particularly grateful to Greg and to Jim, Gerhardt, Rick and
Piotr for inviting me to serve as a visiting research professor at
MSRI in 2013. That was a career altering opportunity for me.

All the work | am presenting here is a direct result of the time |
spent there as | met both my collaborators, Carlos Vega and Anna
Sakovich, at MSRI.

Happy Birthday Greg!

Thank you for all the Advice and Mentoring!



What is Spacetime?

In Special Relativity: Spacetime is R* endowed with the
Minkowski metric g = —dt? + dx? 4 dy? + dz°.
The points in spacetime are events.



What is Spacetime?

In Special Relativity: Spacetime is R* endowed with the
Minkowski metric g = —dt? + dx? 4 dy? + dz°.
The points in spacetime are events.

A null vector, v, has g(v,v) = 0.
Light travels along null geodesics v s.t. g(7/(s),7'(s)) =0 Vt.
Every event has a light cone of null vectors

oriented with a future and a past.



What is Spacetime?

In Special Relativity: Spacetime is R* endowed with the
Minkowski metric g = —dt? + dx? 4 dy? + dz°.
The points in spacetime are events.

A null vector, v, has g(v,v) = 0.
Light travels along null geodesics v s.t. g(7/(s),7'(s)) =0 Vt.
Every event has a light cone of null vectors

oriented with a future and a past.

A timelike vector, v, has g(v,v) < 0.
while a causal vector, v, has g(v,v) <0



What is Spacetime?

In Special Relativity: Spacetime is R* endowed with the
Minkowski metric g = —dt? + dx? 4 dy? + dz°.
The points in spacetime are events.

A null vector, v, has g(v,v) = 0.
Light travels along null geodesics v s.t. g(7/(s),7'(s)) =0 Vt.
Every event has a light cone of null vectors

oriented with a future and a past.

A timelike vector, v, has g(v,v) < 0.
while a causal vector, v, has g(v,v) <0.
An event q is in the causal future of p, written g > p,
iff there is a future directed causal curve, ¢, from p to g:
g(c/(s),c/(s) <0 Vs



What is Spacetime?

In Special Relativity: Spacetime is R* endowed with the
Minkowski metric g = —dt? + dx? 4 dy? + dz°.
The points in spacetime are events.

A null vector, v, has g(v,v) = 0.
Light travels along null geodesics v s.t. g(7/(s),7'(s)) =0 Vt.
Every event has a light cone of null vectors

oriented with a future and a past.

A timelike vector, v, has g(v,v) < 0.
while a causal vector, v, has g(v,v) <0.
An event q is in the causal future of p, written g > p,
iff there is a future directed causal curve, ¢, from p to g:
g(c/(s),c/(s) <0 Vs

This is a flat spacetime with no gravity.
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In General Relativity: Spacetime is a manifold M* endowed with a
Lorentzian metric g of signature — + + +.
The points in spacetime are still called events and every event
has a light cone of null vectors, v with g(v,v) =0,
continuously oriented with a future and a past.

Example: M* = (0,7) x S? with g = —dt? + sin?(t)gss.
There is a big bang and a big crunch in this spacetime.

Again an event q is in the causal future of p, written g > p,
iff there is a future directed causal curve, ¢, from p to g:
g(c'(s),c'(s)) <0 s

A generalized time function, 7 : M — R, is strictly increasing
along all nontrivial future directed causal curves.
Warning: A time function need not exist! Example: M=T*
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In this simplified setting

Einstein's Equations of General Relativity

reduce to an ordinary differential equation for f.

When f increases the universe is said to expand.
If f starts at O there is a big bang
and if it ends at O there is a big crunch.

While these models are very important in cosmology... they are an
oversimplification of the observed universe.
One may ask: How close is the true universe to these models?
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FLRW spacetimes are over simplified:

M* = (a,b) x N3 and g = —dt? + 2(t)gn
because N3 has constant curvature

and matter is assumed to be distributed evenly.

Yet the real universe is known to have stars with gravity wells:

b S

Is a large round universe filled with stars approximately a sphere?

And what about black holes?

Even a universe with a single black hole cannot be considered to
be close to an FLRW space, unless perhaps one cuts out the
interior of the black hole along the horizon.
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Joint with Vega [CQG2016]: We introduce the null distance, d;,
on a spacetime, (M, g), endowed with a time function, 7.
(a time function is strictly increasing along future causal curves)
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The Null Distance in Minkowski Spacetime

Joint with Vega: Given a time function, 7, on a spacetime, (M, g),

k
d-(p,q) = inf L-(8) = inf > [((t) = 7(B(ti+2)
i=1

where the inf is over all piecewise causal curves 8 from p to q.

Example: Minkowski Spacetime

The metric tensor is T

g= —dt2—|—dxf—|—dx22
So if we take 7 =t
then the level sets of
d.(p,-) are cylinders
aligned perfectly with

the light cones.

If we take 7 = t3 then c77 is not even a definite metric!
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When the Null Distance Encodes Causality it is Definite

Joint with Vega: Given a time function, 7, on a spacetime, (M, g),

dr(p, q) = irg)fL mfZ IT(B(t)) — 7(B(tit1)]

where the inf is over all piecewise causal curves 8 from p to q.
Lemma: pis in the future of ¢ = d,(p,q) = 7(p) — 7(q).
Definition: We say d, encodes causality when this is <.
Thm: If d, encodes causality then (M, d,) is a metric space.

Lemma: d. encodes causality on an FLRW spacetime 7 = t.

So we can measure the dszr between two FLRW spacetimes by
converting them to metric spaces and taking the dr between them.
But what about other spacetimes?



The Cosmological Time Function

Andersson-Galloway-Howard defined a time function which is
independent of a particular gauge on a given spacetime
(see also Wald-Yip):

Defn: Tagn(p) is the supremum of the Lorentz distance from p
over all points g in its past. That is,

TaGH(P —SUP/\/ glc '(s)) ds

q<p

where c is a future causal curve from g to p. It is said to be
“regular” if it is finite on all of M and converges to 0 on all past
inextensible curves.

With Vega: If one defines the null distance using a
regular cosmological time function, 7 = TagH,
then it is a definite metric: d;(p,q) =0 <— p=q.

Open: Does it also encode causality? Are the charts biLip?
Work in progress in this direction by B Allen and A Burtscher.
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Spacetime Intrinsic Flat Distances

between Big Bang Spacetimes [in progress with Vegal
The classic Friedmann-Lemaitre-Robertson-Walker spacetimes are
warped product manifolds, with metric tensors g = —dt? + 2(t)h.

They have a big bang iff t > 0 and lim;_,o+ f(t) = 0.
Thm: 3 a single big bang point, po, s.t. c7T(q7 po) = 7(q) Vg € M.

We can then generalize the definition of big bang spacetimes to
include all spacetimes with such a big bang point.

We then convert all such (M, g) into pointed metric spaces
(M, d-, po) canonically and uniquely.

We can then describe their spacetime intrinsic flat distance and the
pointed intrinsic flat convergence of such spaces.

Thus we can achieve our goal: to understand what it means for
the universe to be close to an FLRW space.
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Spacetime Intrinsic Flat Distances between

Maximal Developments [in progress with Sakovich]
We consider spacetimes which are maximal developments of initial
data sets solving Einstein's Equations [Choquet-Bruhat&Geroch].

Example: The Schwarzschild spacetime of mass m > 0 is

2 _ 2 2
8Sch,m = — (rr2mr> dt2+<r2—err> dr’4+r’gse with r > 2m.

Here we have cut out the interior of the black hole along the
horizon at r = 2m. The region t > 0 is the maximal development
of the t = 0 level.

We study the cosmological time, 7 = Tagy, and null distance, c?T
on the t > 0 regions of Schwarzschild spacetimes (and Kerr
spacetimes). We prove the spacetime intrinsic flat limits of these
regions as m — 0 is the t > 0 region in Minkowski spacetime.

Next we plan to study far more general maximal developments.
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Call for more study of the cosmological time!

What spaces have a regular cosmological times?

It appears easy to check when it is finite but is trickier to verify
that it converges to 0 along all past inextensible curves.

What can one say about the cosmological time?
Cui-Jin: —7 is a viscosity soln of g(Vu,Vu) = —1

Can one apply this to explicitly find the value of the cosmological
time function on classic spacetimes?

These are questions for Lorentzian Geometers!!!
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Results on F convergence:

Joint with Lakzian: Methods of estimating dr(My, M>) by finding
Ui € M; which are biLip close, and showing vol(M; \ U;) is small,
and area(0U;) and distance differences X are controlled.

This was applied with Stavrov and will be applied with Sakovich.
Wenger Compactness: If M; have

vol(M;) <V diam(M;) < D area(OM;) < A

then a subsequence M; 7z, My possibly 0.
This was applied with Huang and Lee combined with:

Sormani Arzela-Ascoli: If F; : M; — W where W is compact
have Lip(F;) < K and M; -2 M,
then there exists Fo, : Moo — W with Lip(Fs) < K.

Recent joint work with Brian Allen: provides controls on the
distances and metric tensors which imply GH and F convergence.



Thank you for Listening!

A reminder of the open questions for Lorentzian Geometers:

What spaces have a regular cosmological times?

It appears easy to check when it is finite but is trickier to verify
that it converges to 0 along all past inextensible curves.
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What can one say about the cosmological time?
Cui-Jin: —7 is a viscosity soln of g(Vu,Vu) = —1

Can one apply this to explicitly find the value of the cosmological
time function on classic spacetimes?
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Thanks again! Happy Birthday, Greg!!!



