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Introduction

Definition

A spacetime is singular if it possesses at least one incomplete geodesic.

Singularity theorems structure (Senovilla 1998)

1. Causality condition
e.g. There is a Cauchy surface H : complete spacelike C∞ hypersurface
that intersects every null and timelike line only once

2. The initial or boundary condition
e.g. There exists a trapped surface: spacelike hypersurface for which two
null normals have negative expansion

3. The energy condition
e.g. Null Energy Condition (Penrose)
Rab`

a`b ≥ 0 with `a: null
Strong Energy Condition (Hawking)
RabUaUb ≥ 0 with Ua :timelike

⇒ Then the spacetime is geodesically incomplete.
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Raychaudhuri equation

Expansion

θ̇ = − 1

n − 1
θ2 − 2 σ2 − RabU

aUb

Shear scalar

Curvature

Proof structure:

Initial condition: Geodesics start focusing

Energy condition: Focusing continues

Causality condition: No focal points

⇒ Geodesic incompleteness
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Introduction The classical Einstein-Klein-Gordon field Quantum fields

Energy conditions and quantum inequalities

⇒ Pointwise energy conditions are violated!

Average Energy Conditions

Average energy conditions bound the weighted energy density along an
entire geodesic

∫
γ

dτρ f 2(τ) ≥ −A

Quantum Inequalities

Quantum Inequalities introduce a restriction on the possible magnitude
and duration of any negative energy densities or fluxes within a quantum
field theory.

∫
dτ f 2(τ)〈 : ρ : 〉ω(γ(τ)) ≥ −A
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A singularity theorem with a weakened energy condition

(Fewster, Galloway 2011)

1. Energy condition ∫ ∞
−∞

r(τ)f (τ)2dτ ≥ −|||f |||2

• r(τ) = RµνU
µUν

• |||f |||2 =
L∑
`=0

Q`||f (`)||2

2. The Causality condition: Let S be a smooth spacelike Cauchy
surface

3. Initial contraction

θ(0) ≤ −c

2
−
∫ 0

−τ0

f 2(τ)r(τ)dτ − |||f |||2

⇒ If the geodesic is complete, the Raychaudhuri equation has no solution

(θ → −∞). So the geodesic is incomplete.
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The non-minimally coupled field

The nonminimally-coupled scalar field obeys the field equation

Pξφ = 0, Pξ := �g + m2 + ξR

where ξ is the coupling constant.

Stress-energy tensor

Tµν = (∇µφ)(∇νφ)+
1

2
gµν(m2φ2−(∇φ)2)+ξ(gµν�g −∇µ∇ν−Gµν)φ2

Effective energy density (EED) on a timelike geodesic γ

ρ = Tµν γ̇
µγ̇ν − 1

n − 2
T .
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Average strong energy condition

∫
γ

dτρ f 2(τ) =

∫
γ

dτ

{
− 1− 2ξ

n − 2
m2f 2(τ) +

(
1− 2ξ

n − 1

n − 2

)
(∇γ̇φ)2f 2(τ)

+
2ξ

n − 2
hµν(∇µφ)(∇νφ)f 2(τ) + 2ξ[∇γ̇(f (τ))φ]2 − 2ξφ2(f ′(τ))2

−ξRµν γ̇
µγ̇ν f 2(τ) +

2ξ2

n − 2
Rφ2f 2(τ)

}

ξ ∈ [0, ξc ]
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∫
γ

dτ ρ f 2(τ) ≥ −
∫
γ

dτ

{
1− 2ξ

n − 2
m2f 2(τ) + ξ

(
2(f ′(τ))2 + Rµν γ̇

µγ̇ν f 2(τ)

− 2ξ2

n − 2
Rf 2(τ)

)}
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Average strong energy condition

Imposing Einstein’s equation

8πρ = Rµν γ̇
µγ̇ν ,

(n
2
− 1
)
R = 8πT .

∫
γ
dτ Rµν γ̇

µγ̇ν f 2(τ) ≥ −
∫
γ
dτ

{(
1− 2ξ

n − 2

)
m2f 2(τ)

1− 8πξφ2

+2ξ

(
d

dτ

f (τ)√
1− 8πξφ2

)2}
8πφ2 .

If φ obeys global bounds |φ| ≤ φmax and |∇γ̇φ| ≤ φ′max∫
Rµν γ̇

µγ̇ν f (τ)2 dτ ≥ −Q(‖f ′‖2 + Q̃2‖f ‖2),

with Q, Q̃ depend on m, ξ, φmax and φ′max.
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The singularity theorem

1. The energy condition∫
Rµν γ̇

µγ̇ν f (τ)2 dτ ≥ −Q(‖f ′‖2 + Q̃2‖f ‖2),

2. The causality condition
Let S be a smooth spacelike Cauchy surface

3. Initial contraction
(i) There is K > 0 so that

θ̇|γ(τ) +
θ(γ(τ))2

n − 1
≥ −Q(K 2 + Q̃2) on (−τ0, 0]

holds along every future-directed unit-speed geodesic γ(τ) issuing
orthogonally from S at τ = 0, and
(ii) the expansion θ on S obeys

θ|S < −Q̃
√
Q(n − 1) + Q2/2− 1

2
QK coth (Kτ0) .

⇒ Then (M, g) is future timelike geodesically incomplete.
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The singularity theorem

How much initial contraction is needed?

Quantized scalar field in Minkowski spacetime of dimension 4, in a
thermal state of temperature T < Tm, Tm = mc2/k

φ2
max ∼ 〈:φ2:〉T

Pion: m = 140MeV/c2, θ0 ∼ 10−19s−1 and temperature up to
T = 1010K
Higgs: m = 125GeV/c2, θ0 ∼ 10−14s−1 and temperature up to
T = 1013K

⇒ When the field mass is taken equal to an elementary particle we need

very little initial contraction for either geodesic incompleteness or that,

the solution evolves to a temperature approaching that of the early

universe.
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Quantization

Introduction of a unital *-algebra A (M) on our manifold M,
generated by the objects Φ(f )

We only consider Hadamard states on our algebra, the two-point
function W (x , y) = 〈Φ(x)Φ(y)〉ω : D(M)×D(M)→ C has a
prescribed singularity structure so that the difference between two
states is smooth.

The smeared local Wick polynomials of the form

〈:∇(r)Φ∇(s)Φ:ω(f )〉ω′ = T r ,s [f ](W ′ −W ),

are part of an extended algebra
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Quantization

We need a prescription for finding algebra elements that qualify as
local and covariant Wick powers. Hollands and Wald (2014) set out
a list of axioms that we follow

While the quadratic normal ordered expressions obey Leibniz’ rule,
but not generally the field equation, the differences in their
expectation values obey both

〈(∇(r)ΦPξΦ)(f )〉ω′ − 〈(∇(r)ΦPξΦ)(f )〉ω = 0.

Expectation value of the quantized EED

〈:ρU :ω(f )〉ω′ = 〈ρU(f )〉ω′ − 〈ρU(f )〉ω
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Quantum strong energy inequality (QSEI)

Theorem

For non-minimally coupled scalar field with coupling constant ξ ∈ [0, ξc ], γ a
timelike geodesic, for all Hadamard states ω, the normal-ordered effective
energy density obeys the SQEI∫

dτ f 2(τ)〈:ρU :〉ω(γ(τ)) ≥ −
[
QA(f )1 + 〈:Φ2: ◦ γ〉ω(QB(f ) + QC (f ))

]
,

where

QA(f ) =

∫ ∞
0

dα

π

(
φ∗(ρ̂1 W0)(f̄α, fα) + 2ξα2φ∗W0(f̄α, fα)

)
,

QB [f ](τ) =
1− 2ξ

n − 2
m2f 2(τ) + 2ξ(f ′(τ))2 ,

and

QC [f ](τ) = f 2(τ)ξ

(
RµνUµUν − 2ξ

n − 2
R

)
(τ) .
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Singularity theorem hypothesis from QSEI

If we constrain the state ω and the metric gµν to those that satisfy the
semiclassical Einstein equation we can convert the QEI to a curvature
condition

〈 : Tµν : 〉ω = 8πGµν .

Problems

1. The semiclassical Einstein equation requires that the stress-energy
tensor is Hadamard renormalized

2. In curved spacetimes there is no preferred state

For minimally coupled fields in Minkowski∫
dτ f 2(τ)Rµν γ̇

µγ̇ν ≥ −8π

[ ∫ ∞
0

dα

π
φ∗((∇U ⊗∇U)W0)(f̄α, fα)

+
µ2

n − 2
〈:Φ2: ◦ γ〉ω(f 2)

]
.

14 / 19
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Singularity theorem hypothesis from QSEI

Even number of dimensions

Restrict to a class of Hadamard states ω for which the field’s
magnitude has a finite maximum magnitude∣∣( : Φ2 : γ)ω

∣∣ ≤ φ2
∗ .

∫
dτ f 2(τ)Rµν γ̇

µγ̇ν ≥ − 8πS2m−2

2m(2π)2m
||f (m)||2 − 8πµ2φ2

∗
2m − 2

||f ||2 .
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Singularity theorem hypothesis from QSEI

The result applies in curved spacetimes only if the support of the
sampling function is constrained to be small compared to local
curvature length scales.

To discuss averages over long timescales we will use a partition of
unity. We define bump functions φn each supported only on an
interval 2τ0.

We obtain a sum of integrals, each of which can be bounded using
the Minkowski result∫ ∞

−∞
Rµν γ̇

µγ̇ν f 2(τ)dτ ≥ − 8πS2m−2

2m(2π)2m

∞∑
n=0

∫ ∞
−∞

[(f φn)(m)]2 dτ−8πµ2φ2
∗

2m − 2
‖f ‖2 .
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∫ ∞
−∞

Rµν γ̇
µγ̇ν f 2(τ)dτ ≥ −Qm(‖f (m)‖2 + Q̃2

m‖f ‖2) := |||f |||2 ,

where Qm and Q̃m constants that depend on: m, µ, φ∗ and the
maximum value of the bump function and its derivatives.

This is an expression of the form∫ ∞
−∞

r(τ)f (τ)2dτ ≥ −|||f |||2

so we can prove a singularity theorem with this condition.

17 / 19



Introduction The classical Einstein-Klein-Gordon field Quantum fields

Singularity theorem hypothesis from QSEI

∫ ∞
−∞

Rµν γ̇
µγ̇ν f 2(τ)dτ ≥ −Qm(‖f (m)‖2 + Q̃2

m‖f ‖2) := |||f |||2 ,

where Qm and Q̃m constants that depend on: m, µ, φ∗ and the
maximum value of the bump function and its derivatives.
This is an expression of the form∫ ∞

−∞
r(τ)f (τ)2dτ ≥ −|||f |||2

so we can prove a singularity theorem with this condition.

17 / 19



Introduction The classical Einstein-Klein-Gordon field Quantum fields

1. The energy condition∫ ∞
−∞

Rµν γ̇
µγ̇ν f 2(τ)dτ ≥ −Qm(‖f (m)‖2 + Q̃2

m‖f ‖2) := |||f |||2

2. The causality condition
Let S be a smooth spacelike Cauchy surface for (M, g)

3. Initial contraction
(i) There is K > 0 so that

θ̇|γ(τ) +
θ(γ(τ))2

n − 1
≥ −Qm(K 2 + Q̃2

m) on (−τ0, 0]

holds along every future-directed unit-speed geodesic γ(τ)
issuing orthogonally from S at τ = 0, and
(ii) the expansion θ on S obeys

θ|S < −L(Qm, Q̃m)−M(Qm, Q̃m,K , τ0) .

⇒ Then (M, g) is future timelike geodesically incomplete.
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Conclusions

Classical singularity theorems have easily violated energy conditions
in their hypotheses

Derived a Hawking-type singularity theorem with an energy
condition obeyed by the classical non-minimally coupled
Einstein-Klein-Gordon field

Developed a strong quantum energy inequality for the
non-minimally coupled scalar field

Proved a singularity theorem with an energy condition derived by a
QEI obeyed by the minimally coupled quantum scalar field that
obeys the semiclassical Einstein equation

Work in progress: prove an absolute (Hadamard renormalised) QSEI
for spacetimes with curvature

Future work: Penrose-type theorem
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