Rigidity of asymptotically $AdS_2 \times S^2$ spacetimes (joint with G. Galloway)

Melanie Graf

University of Vienna

• Why do we look at asymptotically $AdS_2 \times S^2$ spacetimes?

- Why do we look at asymptotically $AdS_2 \times S^2$ spacetimes?
 - $AdS_2 \times S^2$ is a (source free) Einstein-Maxwell solution with uniform non-null EM-field

- Why do we look at asymptotically $AdS_2 \times S^2$ spacetimes?
 - $AdS_2 \times S^2$ is a (source free) Einstein-Maxwell solution with uniform non-null EM-field
 - It arises as the near horizon geometry of extremal Reissner-Nordström

- Why do we look at asymptotically $AdS_2 \times S^2$ spacetimes?
 - $AdS_2 \times S^2$ is a (source free) Einstein-Maxwell solution with uniform non-null EM-field
 - It arises as the near horizon geometry of extremal Reissner-Nordström
 - Also studied in connection with the AdS/CFT correspondence

- Why do we look at asymptotically $AdS_2 \times S^2$ spacetimes?
 - $AdS_2 \times S^2$ is a (source free) Einstein-Maxwell solution with uniform non-null EM-field
 - It arises as the near horizon geometry of extremal Reissner-Nordström
 - $\bullet\,$ Also studied in connection with the AdS/CFT correspondence
 - Juan Maldacena: Asymptotically $AdS_2 \times S^2$ spacetimes satisfying the null energy condition should have very special structure or even be *isometric* to $AdS_2 \times S^2$

- Why do we look at asymptotically $AdS_2 \times S^2$ spacetimes?
 - $AdS_2 \times S^2$ is a (source free) Einstein-Maxwell solution with uniform non-null EM-field
 - It arises as the near horizon geometry of extremal Reissner-Nordström
 - $\bullet\,$ Also studied in connection with the AdS/CFT correspondence
 - Juan Maldacena: Asymptotically $AdS_2 \times S^2$ spacetimes satisfying the null energy condition should have very special structure or even be *isometric* to $AdS_2 \times S^2$
- First remarks

- Why do we look at asymptotically $AdS_2 \times S^2$ spacetimes?
 - $AdS_2 \times S^2$ is a (source free) Einstein-Maxwell solution with uniform non-null EM-field
 - It arises as the near horizon geometry of extremal Reissner-Nordström
 - $\bullet\,$ Also studied in connection with the AdS/CFT correspondence
 - Juan Maldacena: Asymptotically $AdS_2 \times S^2$ spacetimes satisfying the null energy condition should have very special structure or even be *isometric* to $AdS_2 \times S^2$
- First remarks
 - AdS_2 = universal cover, in particular causally simple (i.e. causal and $J^{\pm}(p)$ closed)

- Why do we look at asymptotically $AdS_2 \times S^2$ spacetimes?
 - $AdS_2 \times S^2$ is a (source free) Einstein-Maxwell solution with uniform non-null EM-field
 - It arises as the near horizon geometry of extremal Reissner-Nordström
 - $\bullet\,$ Also studied in connection with the AdS/CFT correspondence
 - Juan Maldacena: Asymptotically $AdS_2 \times S^2$ spacetimes satisfying the null energy condition should have very special structure or even be *isometric* to $AdS_2 \times S^2$
- First remarks
 - AdS_2 = universal cover, in particular causally simple (i.e. causal and $J^{\pm}(p)$ closed)
 - Whenever we assume the null energy condition, i.e., $\operatorname{Ric}(X, X) \ge 0$ for all null vectors X, it would actually be sufficient to assume

$$\int_0^\infty \operatorname{Ric}(\eta'(s),\eta'(s))ds \geq 0$$

for all future or past complete null rays η .

$$\mathring{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2$$

•
$$M = \mathbb{R} \times \mathbb{R} \times S^2$$
,

$$\dot{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2$$

(Future directed) null lines: t(x) ~ 2tan⁻¹(e^x), spherical component constant

•
$$M = \mathbb{R} \times \mathbb{R} \times S^2$$
,

$$\dot{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2$$

- (Future directed) null lines: t(x) ~ 2tan⁻¹(e^x), spherical component constant
- Each (future directed) null line η is part of a nice null hypersurface $N = \partial J^+(\eta)$

$$\mathring{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2$$

- (Future directed) null lines: t(x) ~ 2tan⁻¹(e^x), spherical component constant
- Each (future directed) null line η is part of a nice null hypersurface $N = \partial J^+(\eta)$
- This hypersurface is uniquely determined by $\lim_{x\to-\infty} t(\eta) \rightsquigarrow$ foliation $\{N_u\}$

$$\mathring{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2$$

- (Future directed) null lines: t(x) ~ 2tan⁻¹(e^x), spherical component constant
- Each (future directed) null line η is part of a nice null hypersurface $N = \partial J^+(\eta)$
- This hypersurface is uniquely determined by lim_{x→-∞} t(η) → foliation {N_u}
- Similarly, p.d. null lines \rightsquigarrow transverse foliation $\{\hat{N}_{v}\}$

$$\mathring{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2$$

- (Future directed) null lines: t(x) ~ 2tan⁻¹(e^x), spherical component constant
- Each (future directed) null line η is part of a nice null hypersurface $N = \partial J^+(\eta)$
- This hypersurface is uniquely determined by lim_{x→-∞} t(η) → foliation {N_u}
- Similarly, p.d. null lines \sim transverse foliation $\{\hat{N}_v\}$
- $S_{u,v} := N_u \cap \hat{N}_v \cong S^2$; foliation $\{S_{u,v}\}$ by isometric round 2-spheres

•
$$M = \mathbb{R} \times \mathbb{R} \times S^2$$
,

$$\dot{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2$$

- (Future directed) null lines: t(x) ~ 2tan⁻¹(e^x), spherical component constant
- Each (future directed) null line η is part of a nice null hypersurface $N = \partial J^+(\eta)$
- This hypersurface is uniquely determined by lim_{x→-∞} t(η) → foliation {N_u}
- Similarly, p.d. null lines \rightsquigarrow transverse foliation $\{\hat{N}_v\}$
- $S_{u,v} := N_u \cap \hat{N}_v \cong S^2$; foliation $\{S_{u,v}\}$ by isometric round 2-spheres
- Note that $(t_0 + \pi + \frac{\pi}{\cosh(x_0)}, \infty) \times [x_0, \infty) \times S^2 \subset I^+((t_0, x_0, \omega_0))$

•
$$M = \mathbb{R} \times \mathbb{R} \times S^2$$
,

$$\dot{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2$$

- (Future directed) null lines: t(x) ~ 2tan⁻¹(e^x), spherical component constant
- Each (future directed) null line η is part of a nice null hypersurface $N = \partial J^+(\eta)$
- This hypersurface is uniquely determined by $\lim_{x\to-\infty} t(\eta) \rightsquigarrow$ foliation $\{N_u\}$
- Similarly, p.d. null lines \sim transverse foliation $\{\hat{N}_v\}$
- $S_{u,v} := N_u \cap \hat{N}_v \cong S^2$; foliation $\{S_{u,v}\}$ by isometric round 2-spheres
- Note that $(t_0 + \pi + \frac{\pi}{\cosh(x_0)}, \infty) \times [x_0, \infty) \times S^2 \subset I^+((t_0, x_0, \omega_0))$
- Family of wider/narrower metrics \mathring{g}_{α} ($\alpha \in \mathbb{R}$) with $\mathring{g}_{\alpha} = -\alpha \cosh(x)^2 dt^2 + dx^2 + d\Omega^2$

1. Causality and structural assumptions:

- 1. Causality and structural assumptions:
 - 1.1 causally simple,

- 1. Causality and structural assumptions:
 - 1.1 causally simple,
 - 1.2 \exists closed $A \subset M$ st. $M \setminus A^{\circ} = M_1 \sqcup M_2$, with $M_1 \approx \mathbb{R} \times (-\infty, -a] \times S^2$, $M_2 \approx \mathbb{R} \times [a, \infty) \times S^2$ and

- 1. Causality and structural assumptions:
 - 1.1 causally simple,
 - 1.2 \exists closed $A \subset M$ st. $M \setminus A^{\circ} = M_1 \sqcup M_2$, with $M_1 \approx \mathbb{R} \times (-\infty, -a] \times S^2$, $M_2 \approx \mathbb{R} \times [a, \infty) \times S^2$ and

1.3 $\forall p \in A$: $I^{\pm}(p) \cap M_k \neq \emptyset$ and $A \setminus (I^+(p) \cup I^-(p))$ is compact

- 1. Causality and structural assumptions:
 - 1.1 causally simple,

1.2
$$\exists$$
 closed $A \subset M$ st. $M \setminus A^{\circ} = M_1 \sqcup M_2$, with
 $M_1 \approx \mathbb{R} \times (-\infty, -a] \times S^2$, $M_2 \approx \mathbb{R} \times [a, \infty) \times S^2$ and
1.3 $\forall p \in A$: $I^{\pm}(p) \cap M_k \neq \emptyset$ and $A \setminus (I^+(p) \cup I^-(p))$ is compact

2. Asymptotics of g in $M_1 \cup M_2$: Let $\{e_i\}_{i=0}^3$ be a \mathring{g} -ONB with $e_0 = \frac{1}{\cosh(x)} \partial_t$. We require that there exist c_{ij} , C (with $c_{00} < a$) such that for $h := g - \mathring{g}$

- 1. Causality and structural assumptions:
 - 1.1 causally simple,

1.2
$$\exists$$
 closed $A \subset M$ st. $M \setminus A^{\circ} = M_1 \sqcup M_2$, with
 $M_1 \approx \mathbb{R} \times (-\infty, -a] \times S^2$, $M_2 \approx \mathbb{R} \times [a, \infty) \times S^2$ and
1.3 $\forall p \in A$: $I^{\pm}(p) \cap M_k \neq \emptyset$ and $A \setminus (I^+(p) \cup I^-(p))$ is compact

2. Asymptotics of g in $M_1 \cup M_2$: Let $\{e_i\}_{i=0}^3$ be a \mathring{g} -ONB with $e_0 = \frac{1}{\cosh(x)}\partial_t$. We require that there exist c_{ij} , C (with $c_{00} < a$) such that for $h := g - \mathring{g}$ 2.1 $|h(e_i, e_j)| \leq \frac{c_{ij}}{|x|}$

- 1. Causality and structural assumptions:
 - 1.1 causally simple,

1.2
$$\exists$$
 closed $A \subset M$ st. $M \setminus A^{\circ} = M_1 \sqcup M_2$, with
 $M_1 \approx \mathbb{R} \times (-\infty, -a] \times S^2$, $M_2 \approx \mathbb{R} \times [a, \infty) \times S^2$ and
1.3 $\forall p \in A$: $I^{\pm}(p) \cap M_k \neq \emptyset$ and $A \setminus (I^+(p) \cup I^-(p))$ is compact

2. Asymptotics of g in $M_1 \cup M_2$: Let $\{e_i\}_{i=0}^3$ be a \mathring{g} -ONB with $e_0 = \frac{1}{\cosh(x)}\partial_t$. We require that there exist c_{ij} , C (with $c_{00} < a$) such that for $h := g - \mathring{g}$ 2.1 $|h(e_i, e_j)| \leq \frac{c_{ij}}{|x|}$ 2.2 $|e_k(h(e_i, e_j))| \leq \frac{C}{|x|}$, $|e_0(h(e_i, e_j))| \leq \frac{C}{|x|^2}$ and

- 1. Causality and structural assumptions:
 - 1.1 causally simple,

1.2
$$\exists$$
 closed $A \subset M$ st. $M \setminus A^{\circ} = M_1 \sqcup M_2$, with
 $M_1 \approx \mathbb{R} \times (-\infty, -a] \times S^2$, $M_2 \approx \mathbb{R} \times [a, \infty) \times S^2$ and
1.3 $\forall p \in A$: $I^{\pm}(p) \cap M_k \neq \emptyset$ and $A \setminus (I^+(p) \cup I^-(p))$ is compact

2. Asymptotics of g in $M_1 \cup M_2$: Let $\{e_i\}_{i=0}^3$ be a \mathring{g} -ONB with $e_0 = \frac{1}{\cosh(x)} \partial_t$. We require that there exist c_{ij} , C (with $c_{00} < a$) such that for $h := g - \mathring{g}$ 2.1 $|h(e_i, e_j)| \leq \frac{c_{ij}}{|x|}$ 2.2 $|e_k(h(e_i, e_j))| \leq \frac{C}{|x|}$, $|e_0(h(e_i, e_j))| \leq \frac{C}{|x|^2}$ and 2.3 $|e_m(e_k(h(e_i, e_j)))| \leq \frac{C}{|x|}$

- 1. Causality and structural assumptions:
 - 1.1 causally simple,

1.2
$$\exists$$
 closed $A \subset M$ st. $M \setminus A^{\circ} = M_1 \sqcup M_2$, with
 $M_1 \approx \mathbb{R} \times (-\infty, -a] \times S^2$, $M_2 \approx \mathbb{R} \times [a, \infty) \times S^2$ and
1.3 $\forall p \in A$: $I^{\pm}(p) \cap M_k \neq \emptyset$ and $A \setminus (I^+(p) \cup I^-(p))$ is compact

2. Asymptotics of g in $M_1 \cup M_2$: Let $\{e_i\}_{i=0}^3$ be a \mathring{g} -ONB with $e_0 = \frac{1}{\cosh(x)} \partial_t$. We require that there exist c_{ij} , C (with $c_{00} < a$) such that for $h := g - \mathring{g}$ 2.1 $|h(e_i, e_j)| \leq \frac{c_{ij}}{|x|}$ 2.2 $|e_k(h(e_i, e_j))| \leq \frac{C}{|x|}$, $|e_0(h(e_i, e_j))| \leq \frac{C}{|x|^2}$ and 2.3 $|e_m(e_k(h(e_i, e_j)))| \leq \frac{C}{|x|}$

For future use: Define $M(r) := (M_1 \cup M_2) \cap \{|x| \ge r\}$

Main results

Theorem (Galloway, G., 2018)

Let (M, g) be an asymptotically $AdS_2 \times S^2$ spacetime satisfying the null energy condition (NEC). Then

- 1. (M, g) possesses two continuous transverse foliations by smooth totally geodesic null hypersurfaces $\{N_u\}_{u \in \mathbb{R}}, \{\hat{N}_v\}_{v \in \mathbb{R}}$ and $N_u, \hat{N}_v \approx \mathbb{R} \times S^2$
- 2. (*M*, *g*) is coninuously foliated by totally geodesic isometric round (i.e. constant curvature) 2-spheres

Main results

Theorem (Galloway, G., 2018)

Let (M, g) be an asymptotically $AdS_2 \times S^2$ spacetime satisfying the null energy condition (NEC). Then

- 1. (M, g) possesses two continuous transverse foliations by smooth totally geodesic null hypersurfaces $\{N_u\}_{u \in \mathbb{R}}, \{\hat{N}_v\}_{v \in \mathbb{R}}$ and $N_u, \hat{N}_v \approx \mathbb{R} \times S^2$
- 2. (*M*, *g*) is coninuously foliated by totally geodesic isometric round (i.e. constant curvature) 2-spheres

Theorem (Galloway, G., 2018)

Let (M, g) be an asymptotically $AdS_2 \times S^2$ spacetime satisfying the NEC. If $\nabla \text{Ric} = 0$, then (M, g) is globally isometric to $AdS_2 \times S^2$.

• Get control over asymptotics: $\forall r \in [a, \infty) \exists \alpha_r < 1, \beta_r > 1$ st. $\mathring{g}_{\alpha_r} \prec g \prec \mathring{g}_{\beta_r}$ on M(r) and $\alpha_r, \beta_r \to 1$

- Get control over asymptotics: $\forall r \in [a, \infty) \exists \alpha_r < 1, \beta_r > 1$ st. $\mathring{g}_{\alpha_r} \prec g \prec \mathring{g}_{\beta_r}$ on M(r) and $\alpha_r, \beta_r \to 1$
- Some properties of null rays and lines:

- Get control over asymptotics: $\forall r \in [a, \infty) \exists \alpha_r < 1, \beta_r > 1$ st. $\mathring{g}_{\alpha_r} \prec g \prec \mathring{g}_{\beta_r}$ on M(r) and $\alpha_r, \beta_r \rightarrow 1$
- Some properties of null rays and lines:
 - Null rays must run to either $-\infty$ or $+\infty$, can eventually be parametrized w.r.t. the x-coordinate and are complete.

- Get control over asymptotics: $\forall r \in [a, \infty) \exists \alpha_r < 1, \beta_r > 1$ st. $\mathring{g}_{\alpha_r} \prec g \prec \mathring{g}_{\beta_r}$ on M(r) and $\alpha_r, \beta_r \rightarrow 1$
- Some properties of null rays and lines:
 - Null rays must run to either $-\infty$ or $+\infty$, can eventually be parametrized w.r.t. the x-coordinate and are complete.
 - Future (and past) null rays exist, null lines exist

- Get control over asymptotics: $\forall r \in [a, \infty) \exists \alpha_r < 1, \beta_r > 1$ st. $\mathring{g}_{\alpha_r} \prec g \prec \mathring{g}_{\beta_r}$ on M(r) and $\alpha_r, \beta_r \rightarrow 1$
- Some properties of null rays and lines:
 - Null rays must run to either $-\infty$ or $+\infty$, can eventually be parametrized w.r.t. the *x*-coordinate and are complete.
 - Future (and past) null rays exist, null lines exist
 - If η_1, η_2 are two null lines with $\lim t(\eta_1) = \lim t(\eta_2)$ as $x \to -\infty$, then $\eta_1 \subset \partial J^+(\eta_2)$

- Get control over asymptotics: $\forall r \in [a, \infty) \exists \alpha_r < 1, \beta_r > 1$ st. $\mathring{g}_{\alpha_r} \prec g \prec \mathring{g}_{\beta_r}$ on M(r) and $\alpha_r, \beta_r \rightarrow 1$
- Some properties of null rays and lines:
 - Null rays must run to either $-\infty$ or $+\infty$, can eventually be parametrized w.r.t. the *x*-coordinate and are complete.
 - Future (and past) null rays exist, null lines exist
 - If η_1, η_2 are two null lines with $\lim t(\eta_1) = \lim t(\eta_2)$ as $x \to -\infty$, then $\eta_1 \subset \partial J^+(\eta_2)$
 - $\partial J^+(\eta) \approx \mathbb{R} \times S^2$

- Get control over asymptotics: $\forall r \in [a, \infty) \exists \alpha_r < 1, \beta_r > 1$ st. $\mathring{g}_{\alpha_r} \prec g \prec \mathring{g}_{\beta_r}$ on M(r) and $\alpha_r, \beta_r \rightarrow 1$
- Some properties of null rays and lines:
 - Null rays must run to either $-\infty$ or $+\infty$, can eventually be parametrized w.r.t. the *x*-coordinate and are complete.
 - Future (and past) null rays exist, null lines exist
 - If η_1, η_2 are two null lines with $\lim t(\eta_1) = \lim t(\eta_2)$ as $x \to -\infty$, then $\eta_1 \subset \partial J^+(\eta_2)$
 - $\partial J^+(\eta) \approx \mathbb{R} \times S^2$

The null splitting theorem (Galloway, 2000)

Let *M* be a null geodesically complete spacetime satisfying the NEC and containing a null line η . Then η is contained in a smooth closed achronal totally geodesic null hypersurface.

- Get control over asymptotics: $\forall r \in [a, \infty) \exists \alpha_r < 1, \beta_r > 1$ st. $\mathring{g}_{\alpha_r} \prec g \prec \mathring{g}_{\beta_r}$ on M(r) and $\alpha_r, \beta_r \rightarrow 1$
- Some properties of null rays and lines:
 - Null rays must run to either $-\infty$ or $+\infty$, can eventually be parametrized w.r.t. the *x*-coordinate and are complete.
 - Future (and past) null rays exist, null lines exist
 - If η_1, η_2 are two null lines with $\lim t(\eta_1) = \lim t(\eta_2)$ as $x \to -\infty$, then $\eta_1 \subset \partial J^+(\eta_2)$
 - $\partial J^+(\eta) \approx \mathbb{R} \times S^2$

The null splitting theorem (Galloway, 2000)

Let *M* be a null geodesically complete spacetime satisfying the NEC and containing a null line η . Then η is contained in a smooth closed achronal totally geodesic null hypersurface.

• \rightsquigarrow totally geodesic null hypersurfaces $\{N_u\}_{u \in \mathbb{R}}$ $(u = \lim t(\eta), N_u = \partial J^+(\eta)$ for any null geod. generator η)

- Get control over asymptotics: $\forall r \in [a, \infty) \exists \alpha_r < 1, \beta_r > 1$ st. $\mathring{g}_{\alpha_r} \prec g \prec \mathring{g}_{\beta_r}$ on M(r) and $\alpha_r, \beta_r \rightarrow 1$
- Some properties of null rays and lines:
 - Null rays must run to either $-\infty$ or $+\infty$, can eventually be parametrized w.r.t. the *x*-coordinate and are complete.
 - Future (and past) null rays exist, null lines exist
 - If η_1, η_2 are two null lines with $\lim t(\eta_1) = \lim t(\eta_2)$ as $x \to -\infty$, then $\eta_1 \subset \partial J^+(\eta_2)$
 - $\partial J^+(\eta) \approx \mathbb{R} \times S^2$

The null splitting theorem (Galloway, 2000)

Let *M* be a null geodesically complete spacetime satisfying the NEC and containing a null line η . Then η is contained in a smooth closed achronal totally geodesic null hypersurface.

- \rightsquigarrow totally geodesic null hypersurfaces $\{N_u\}_{u \in \mathbb{R}}$ $(u = \lim t(\eta), N_u = \partial J^+(\eta)$ for any null geod. generator η)
- This is a continuous codimension one foliation!

• By time-dualizing, one obtains a second foliation by smooth totally geodesic null hypersurfaces $\hat{N}_{\nu} \approx \mathbb{R} \times S^2$, $\nu \in \mathbb{R}$, transverse to the foliation $\{N_u\}$

- By time-dualizing, one obtains a second foliation by smooth totally geodesic null hypersurfaces $\hat{N}_{\nu} \approx \mathbb{R} \times S^2$, $\nu \in \mathbb{R}$, transverse to the foliation $\{N_u\}$
- Set $S_{u,v} := N_u \cap \hat{N}_v$

- By time-dualizing, one obtains a second foliation by smooth totally geodesic null hypersurfaces $\hat{N}_{v} \approx \mathbb{R} \times S^{2}$, $v \in \mathbb{R}$, transverse to the foliation $\{N_{u}\}$
- Set $S_{u,v} := N_u \cap \hat{N}_v$
- N_u totally geodesic \iff null second fundamental form vanishes $\implies g|_{S_{u,v_1}} = g|_{S_{u,v_2}}$

- By time-dualizing, one obtains a second foliation by smooth totally geodesic null hypersurfaces $\hat{N}_{v} \approx \mathbb{R} \times S^{2}$, $v \in \mathbb{R}$, transverse to the foliation $\{N_{u}\}$
- Set $S_{u,v} := N_u \cap \hat{N}_v$
- N_u totally geodesic \iff null second fundamental form vanishes $\implies g|_{S_{u,v_1}} = g|_{S_{u,v_2}}$
- Lemma: $\forall \varepsilon > 0 \exists r \text{ st. } \forall S_{u,v} \subset M(r): 1 \varepsilon \leq K_{u,v} \leq 1 + \varepsilon \text{ and}$

- By time-dualizing, one obtains a second foliation by smooth totally geodesic null hypersurfaces $\hat{N}_{\nu} \approx \mathbb{R} \times S^2$, $\nu \in \mathbb{R}$, transverse to the foliation $\{N_u\}$
- Set $S_{u,v} := N_u \cap \hat{N}_v$
- N_u totally geodesic \iff null second fundamental form vanishes $\implies g|_{S_{u,v_1}} = g|_{S_{u,v_2}}$
- Lemma: $\forall \varepsilon > 0 \exists r \text{ st. } \forall S_{u,v} \subset M(r): 1 \varepsilon \leq K_{u,v} \leq 1 + \varepsilon \text{ and}$
- the $S_{u,v}$ move outward as $v \searrow u$

- By time-dualizing, one obtains a second foliation by smooth totally geodesic null hypersurfaces $\hat{N}_{\nu} \approx \mathbb{R} \times S^2$, $\nu \in \mathbb{R}$, transverse to the foliation $\{N_u\}$
- Set $S_{u,v} := N_u \cap \hat{N}_v$
- N_u totally geodesic \iff null second fundamental form vanishes $\implies g|_{S_{u,v_1}} = g|_{S_{u,v_2}}$
- Lemma: $\forall \varepsilon > 0 \exists r \text{ st. } \forall S_{u,v} \subset M(r): 1 \varepsilon \leq K_{u,v} \leq 1 + \varepsilon \text{ and}$
- the $S_{u,v}$ move outward as $v \searrow u$
- So, since $K_{u,v}$ is constant in v, it must equal 1 and $S_{u,v} \cong (S^2, d\Omega^2)$

- By time-dualizing, one obtains a second foliation by smooth totally geodesic null hypersurfaces $\hat{N}_{\nu} \approx \mathbb{R} \times S^2$, $\nu \in \mathbb{R}$, transverse to the foliation $\{N_u\}$
- Set $S_{u,v} := N_u \cap \hat{N}_v$
- N_u totally geodesic \iff null second fundamental form vanishes $\implies g|_{S_{u,v_1}} = g|_{S_{u,v_2}}$
- Lemma: $\forall \varepsilon > 0 \exists r \text{ st. } \forall S_{u,v} \subset M(r): 1 \varepsilon \leq K_{u,v} \leq 1 + \varepsilon \text{ and}$
- the $S_{u,v}$ move outward as $v \searrow u$
- So, since $K_{u,v}$ is constant in v, it must equal 1 and $S_{u,v} \cong (S^2, d\Omega^2)$
- \sim continuous co-dimension two foliation by totally geodesic round 2-spheres.

• There exist spacetimes that are asymptotically $AdS_2 \times S^2$ but not exact $AdS_2 \times S^2$, e.g.

- There exist spacetimes that are asymptotically $AdS_2 \times S^2$ but not exact $AdS_2 \times S^2$, e.g.
 - ^{e^{-2f(t,x)}}/_{sin²(x)} (-dt² + dx²) + dΩ² with f satisfying some asymptotic conditions (Paul Tod)

- There exist spacetimes that are asymptotically $AdS_2 \times S^2$ but not exact $AdS_2 \times S^2$, e.g.
 - $\frac{e^{-2f(t,x)}}{\sin^2(x)}(-dt^2 + dx^2) + d\Omega^2$ with f satisfying some asymptotic conditions (Paul Tod)
 - $g = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + d\Omega^2$ with f > 0 and even s.t. $f'' \ge 0$ and $f(r) = 1 + r^2$ outside some interval $[-r_0, r_0]$ (Greg Galloway)

- There exist spacetimes that are asymptotically $AdS_2 \times S^2$ but not exact $AdS_2 \times S^2$, e.g.
 - ^{e^{-2f(t,x)}}/_{sin²(x)} (-dt² + dx²) + dΩ² with f satisfying some asymptotic conditions (Paul Tod)
 - $g = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + d\Omega^2$ with f > 0 and even s.t. $f'' \ge 0$ and $f(r) = 1 + r^2$ outside some interval $[-r_0, r_0]$ (Greg Galloway)
- If our foliations are smooth enough, then (M, g) must split as a product with second factor isometric to S^2 (Paul Tod)

- There exist spacetimes that are asymptotically $AdS_2 \times S^2$ but not exact $AdS_2 \times S^2$, e.g.
 - $\frac{e^{-2f(t,x)}}{\sin^2(x)}(-dt^2 + dx^2) + d\Omega^2$ with f satisfying some asymptotic conditions (Paul Tod)
 - $g = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + d\Omega^2$ with f > 0 and even s.t. $f'' \ge 0$ and $f(r) = 1 + r^2$ outside some interval $[-r_0, r_0]$ (Greg Galloway)
- If our foliations are smooth enough, then (M, g) must split as a product with second factor isometric to S^2 (Paul Tod)
 - He uses *u*, *v* as coordinates and shows that the off-block-diagonal metric components vanish using Newman Penrose formalism and the Bianchi identities.

- There exist spacetimes that are asymptotically $AdS_2 \times S^2$ but not exact $AdS_2 \times S^2$, e.g.
 - $\frac{e^{-2f(t,x)}}{\sin^2(x)}(-dt^2 + dx^2) + d\Omega^2$ with f satisfying some asymptotic conditions (Paul Tod)
 - $g = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + d\Omega^2$ with f > 0 and even s.t. $f'' \ge 0$ and $f(r) = 1 + r^2$ outside some interval $[-r_0, r_0]$ (Greg Galloway)
- If our foliations are smooth enough, then (M, g) must split as a product with second factor isometric to S^2 (Paul Tod)
 - He uses *u*, *v* as coordinates and shows that the off-block-diagonal metric components vanish using Newman Penrose formalism and the Bianchi identities.
- Question: Is the above true in general? How to prove it?

$$g = \frac{1}{\sin^2(x)} \left(-dt^2 + dx^2 + \sin^2(x) \left[d\theta^2 + \sin^2(\theta) d\phi^2 \right] \right)$$

• In certain coordinates $AdS_2 \times S^2$ becomes $\mathbb{R} \times S^3 \setminus \{N, S\}$ (with N, S denoting north and south pole of S^3) with metric

$$g=rac{1}{\sin^2(x)}igg(-dt^2+dx^2+\sin^2(x)ig[d heta^2+\sin^2(heta)d\phi^2ig]igg)$$

 Conformally embeds into the Einstein static universe but its boundary consists of two timelike lines!

$$g=rac{1}{\sin^2(x)}igg(-dt^2+dx^2+\sin^2(x)ig[d heta^2+\sin^2(heta)d\phi^2ig]igg)$$

- Conformally embeds into the Einstein static universe but its boundary consists of two timelike lines!
- Work-in-progress Definition: (M, g) has an asympt. $AdS_2 \times S^p$ end if \exists spacetime $(\overline{M}, \overline{g})$ (with $\overline{g} \in C^{0,1}$) and $\Omega \in C^{0,1}(\overline{M})$ s.t.

$$g=rac{1}{\sin^2(x)}igg(-dt^2+dx^2+\sin^2(x)ig[d heta^2+\sin^2(heta)d\phi^2ig]igg)$$

- Conformally embeds into the Einstein static universe but its boundary consists of two timelike lines!
- Work-in-progress Definition: (M, g) has an asympt. $AdS_2 \times S^p$ end if \exists spacetime $(\overline{M}, \overline{g})$ (with $\overline{g} \in C^{0,1}$) and $\Omega \in C^{0,1}(\overline{M})$ s.t.
 - (\bar{M}, \bar{g}) globally hyperbolic

$$g=rac{1}{\sin^2(x)}igg(-dt^2+dx^2+\sin^2(x)ig[d heta^2+\sin^2(heta)d\phi^2ig]igg)$$

- Conformally embeds into the Einstein static universe but its boundary consists of two timelike lines!
- Work-in-progress Definition: (M, g) has an asympt. $AdS_2 \times S^p$ end if \exists spacetime $(\overline{M}, \overline{g})$ (with $\overline{g} \in C^{0,1}$) and $\Omega \in C^{0,1}(\overline{M})$ s.t.
 - $(\overline{M}, \overline{g})$ globally hyperbolic
 - $M \subseteq \overline{M}$, and $\partial M = \mathcal{J}$ where \mathcal{J} is an inextendible timelike curve in M

$$g=rac{1}{\sin^2(x)}igg(-dt^2+dx^2+\sin^2(x)ig[d heta^2+\sin^2(heta)d\phi^2ig]igg)$$

- Conformally embeds into the Einstein static universe but its boundary consists of two timelike lines!
- Work-in-progress Definition: (M, g) has an asympt. $AdS_2 \times S^p$ end if \exists spacetime $(\overline{M}, \overline{g})$ (with $\overline{g} \in C^{0,1}$) and $\Omega \in C^{0,1}(\overline{M})$ s.t.
 - $(\overline{M}, \overline{g})$ globally hyperbolic
 - $M \subseteq \overline{M}$, and $\partial M = \mathcal{J}$ where \mathcal{J} is an inextendible timelike curve in M
 - $\Omega|_M \in C^\infty$, $\Omega > 0$ on M and $\Omega = 0$ on $\mathcal J$

$$g=rac{1}{\sin^2(x)}igg(-dt^2+dx^2+\sin^2(x)ig[d heta^2+\sin^2(heta)d\phi^2ig]igg)$$

- Conformally embeds into the Einstein static universe but its boundary consists of two timelike lines!
- Work-in-progress Definition: (M, g) has an asympt. $AdS_2 \times S^p$ end if \exists spacetime $(\overline{M}, \overline{g})$ (with $\overline{g} \in C^{0,1}$) and $\Omega \in C^{0,1}(\overline{M})$ s.t.
 - (\bar{M}, \bar{g}) globally hyperbolic
 - $M \subseteq \overline{M}$, and $\partial M = \mathcal{J}$ where \mathcal{J} is an inextendible timelike curve in M
 - $\Omega|_M \in C^\infty$, $\Omega > 0$ on M and $\Omega = 0$ on $\mathcal J$
 - $\bar{g} = \Omega^2 g$ on M

$$g=rac{1}{\sin^2(x)}igg(-dt^2+dx^2+\sin^2(x)[d heta^2+\sin^2(heta)d\phi^2]igg)$$

- Conformally embeds into the Einstein static universe but its boundary consists of two timelike lines!
- Work-in-progress Definition: (M, g) has an asympt. $AdS_2 \times S^p$ end if \exists spacetime (\bar{M}, \bar{g}) (with $\bar{g} \in C^{0,1}$) and $\Omega \in C^{0,1}(\bar{M})$ s.t.
 - (\bar{M}, \bar{g}) globally hyperbolic
 - $M \subseteq \overline{M}$, and $\partial M = \mathcal{J}$ where \mathcal{J} is an inextendible timelike curve in M
 - $\Omega|_M \in C^\infty$, $\Omega > 0$ on M and $\Omega = 0$ on $\mathcal J$
 - $\bar{g} = \Omega^2 g$ on M
- See where this leads! (Examples, completenes of null \bar{g} -geodesics ending at \mathcal{J} , topological structure/rigidity, relation to coordinate-asymptotics-definition, ...)

Happy Gregfest!