Using timelike completeness to prove inextendibility of spacetimes in low regularity

Eric Ling University of Miami

GregFest!

Joint work with Greg Galloway, Jan Sbierski, and Melanie Graf.

Strong Cosmic Censorship Conjecture:

The maximal globally hyperbolic development of generic initial data for Einstein's equations is inextendible as a suitably regular Lorentzian manifold.

This talk will mostly be concerned with the question:

Which spacetimes are C^0 -inextendible?

 A spacetime (M,g) is C⁰-extendible if there is a spacetime (M_{ext}, g_{ext}) with a C⁰ metric such that (M,g) embeds

$$(M,g) \hookrightarrow (M_{\mathsf{ext}},g_{\mathsf{ext}})$$

properly and isometrically.

▶ If no such extension exists, then (M, g) is C^{0} -inextendible.

Jan Sbierski showed

Theorem (Sbierski (2015))

The maximally analytic Schwarzschild spacetime is C^0 -inextendible.

In his paper he raised an open question:

Are timelike complete spacetimes C^0 -inextendible?

Answer to Sbierski's Question

We don't know.

But we do know...

Theorem (Galloway, L., and Sbierski (2017))

A globally hyperbolic and timelike complete spacetime is C^0 -inextendible.

Theorem (Graf and L. (2017))

A timelike complete spacetime is inextendible as a spacetime with a Lipschitz metric (i.e. it's $C^{0,1}$ -inextendible).

Suppose $(M_{\text{ext}}, g_{\text{ext}})$ is a C^0 -extension of (M, g).

► The *future boundary of M*, denoted by $\partial^+ M$, is the set of points $p \in \partial M$ such that there is a smooth future directed timelike curve $\gamma : [0, 1] \rightarrow M_{\text{ext}}$ satisfying

$$\gamma(1) = p$$
 and $\gamma([0,1)) \subset M$.

▶ The past boundary of M, denoted by $\partial^- M$, is defined time dually.

$p \in \partial^+ M$

$p \in \partial^+ M$

$$\gamma(1)=p \quad ext{and} \quad \gammaig([0,1)ig)\subset M.$$

Various points on $\partial^+ M$ and $\partial^- M$

Lemma (Sbierski)

Suppose (M_{ext}, g_{ext}) is a C^0 -extension of (M, g). Then $\partial^+ M \cup \partial^- M \neq \emptyset$.

If one assumes a C^0 -extension of (M, g) and proves

 $\partial^+ M = \emptyset$ and $\partial^- M = \emptyset$,

then the Lemma yields a contradiction. Thus (M, g) is C^{0} -inextendible.

Plan of attack

Somehow use future timelike completeness to show $\partial^+ M = \emptyset$.

A neighborhood about $p \in \partial^+ M$

A small neighborhood about p.

What do we know about this neighborhood?

What do we know about this neighborhood?

• $g_{\mu\nu}(p) = \eta_{\mu\nu}$

$$|g_{\mu\nu}(x) - \eta_{\mu\nu}| < \varepsilon$$

• The negative x^0 -axis makes up γ which lies in M.

Can we find a timelike a geodesic?

Sure we can!

A timelike geodesic

We found one! Does it do us any good? Nope.

How do we proceed?

We need to find an invariant quantity.

Globally hyperbolic spacetimes have causal maximizers.

A causal maximizer

A globally hyperbolic spacetime.

Back to our neighborhood

Causal maximizers can leave our neighborhood

We want to keep the focus within our neighborhood

We want to keep the focus within our neighborhood

We take a globally hyperbolic subset of our neighborhood.

A globally hyperbolic subset of our neighborhood

Finding a causal maximizer

 $L(\lambda) \geq L(\gamma)$

- $\lambda|_M$ is future inextendible in M.
- \blacktriangleright λ is a causal maximizer.
- ► *M* is timelike complete.

Therefore the portion of λ lying in M must be a null geodesic.

λ is null within M

 λ is null within *M*.

λ is null within M

This picture seems to violate the twin paradox.

Alice

Bob

Bob was born just 2 minutes before Alice.

Alice. You have to respect your elders.

Back to our neighborhood

 $L(\lambda) \geq L(\gamma)$

We don't know how much of λ is in M.

Therefore causal diamonds in M are compact.

That's a compact set!

Narrow diamonds are subsets of M

Narrow diamonds are subsets of M

That's a subset of M.

Narrow diamonds are subsets of M

 $L(\lambda) \geq L(\gamma)$

Thus...

Theorem (Galloway, L., and Sbierski (2017))

A globally hyperbolic and timelike complete spacetime is C⁰-inextendible.

Getting rid of global hyperbolicity

Theorem (Graf, L. (2017))

Causal maximizers in spacetimes with a Lipschitz metric are either timelike or null.

Getting rid of global hyperbolicity

This can't happen in a Lipschitz spacetime.

Thus...

Theorem (Graf and L. (2017))

A timelike complete spacetime is inextendible as a spacetime with a Lipschitz metric (i.e. it's $C^{0,1}$ -inextendible).

Thank you!

Happy GregFest!