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1 Lorentzian manifolds

In General Relativity, the space of events is represented by a Lorentzian manifold,
which is a smooth manifold Mn+1 equipped with a metric g of Lorentzian signature.
Thus, at each p ∈M ,

g : TpM × TpM → R (1.1)

is a scalar product of signature (−,+, ...,+). With respect to an orthonormal basis
{e0, e1, ..., en}, as a matrix,

[g(ei, ej)] = diag(−1,+1, ...,+1) . (1.2)

Example: Minkowski space, the spacetime of Special Relativity. Minkowski space is

Rn+1, equipped with the Minkowski metric η: For vectors X = X i ∂
∂xi

, Y = Y i ∂
∂xi

at
p, (where xi are standard Cartesian coordinates on Rn+1),

η(X, Y ) = −X0Y 0 +
n∑
i=1

X iY i . (1.3)

Similarly, for the Lorentzian metric g, we have for vectors X = X iei, Y = Y jej
at p,

g(X, Y ) = g(ei, ej)X
iY j = −X0Y 0 +

n∑
i=1

X iY i . (1.4)

Thus, each tangent space of a Lorentzian manifold is isometric to Minkowski space.
Hence, one may say that Lorentzian manifolds are locally modeled on Minkowski
space, just as Riemannian manifolds are locally modeled on Euclidean space.

1.1 Causal character of vectors.
At each point, vectors fall into three classes, as follows:

X is


timelike if g(X,X) < 0

null if g(X,X) = 0

spacelike if g(X,X) > 0 .

We see that the set of null vectors X ∈ TpM forms a double cone Vp in the tangent
space TpM :
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called the null cone (or light cone) at p. Timelike vectors point inside the null cone
and spacelike vectors point outside.

Time orientability. Consider at each point of p in a Lorentzian manifold M the null
cone Vp ⊂ TpM . Vp is a double cone consisting of two cones, V+

p and V−p :

We may designate one of the cones, V+
p , say, as the future null cone at p, and

the other half cone, V−p , as the past null cone at p. If this assignment can made in a
continuous manner over all of M (this can always be done locally) then we say that
M is time-orientable. The following figure illustrates a Lorentzian manifold that is
not time-orientable (even though the underlying manifold is orientable).

There are various ways to make the phrase “continuous assignment” precise (see
e.g., [15, p. 145]), but they all result in the following, which we adopt as the definition
of of time-orientability.

Definition 1.1. A Lorentzian manifold Mn+1 is time-orientable iff it admits a smooth
timelike vector field T .

If M is time-orientable, the choice of a smooth time-like vector field T fixes a time
orientation on M . For any p ∈ M , a (nonzero) causal vector X ∈ TpM is future
directed (resp. past directed) provided g(X,T ) < 0 (resp. g(X,T ) > 0). Thus X is
future directed if it points into the same half cone at p as T .

We remark that if M is not time-orientable, it admits a double cover that is.

By a spacetime we mean a connected time-oriented Lorentzian manifold (Mn+1, g).
We will usually restrict attention to spacetimes.

Lorentzian inequalities. We say that X ∈ TpM is causal if it is time like or null,
g(X,X) ≤ 0. If X is causal, define its length as

|X| =
√
−g(X,X) .
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Proposition 1.1. The following basic inequalities hold.

(1) (Reverse Schwarz inequality) For all causal vectors X, Y ∈ TpM ,

|g(X, Y )| ≥ |X||Y | (1.5)

(2) (Reverse triangle inequality) For all causal vectors X, Y that point into the same
half cone of the null cone at p,

|X + Y | ≥ |X|+ |Y | . (1.6)

Proof hints: Note (1.5) trivially holds if X is null. For X timelike, decompose Y as
Y = λX + Y ⊥, where Y ⊥ (the component of Y perpendicular to X) is necesarily
spacelike. Inequality (1.6) follows easily from (1.5).

The Reverse triangle inequality is the source of the twin paradox.

1.2 Causal character of curves:
Let γ : I →M , t→ γ(t) be a smooth curve in M .

γ is said to be timelike provided γ′(t) is timelike for all t ∈ I.

In GR, a timelike curve corresponds to the history (or worldline)
of an observer.

Null curves and spacelike curves are defined analogously.

A causal curve is a curve whose tangent is either timelike or null at each point.
Heuristically, in accordance with relativity, information flows along causal curves, and
so such curves are the focus of our attention.

The notion of a causal curve extends in a natural way to piecewise smooth curves.
The only extra requirement is that when two segments join, at some point p, say, the
end point tangent vectors must point into the same half cone of the null cone Vp at
p. We will normally work within this class of piecewise smooth causal curves.

The length of a causal curve γ : [a, b]→M , is defined by

L(γ) = Length of γ =

∫ b

a

|γ′(t)|dt =

∫ b

a

√
−〈γ′(t), γ′(t)〉 dt .

If γ is timelike one can introduce arc length parameter along γ. In general relativity,
the arc length parameter along a timelike curve is called proper time, and corresponds
to time kept by the observer.

1.3 The Levi-Civita connection and geodesics.
Recall that a Lorentzian manifold M (like any pseudo-Riemannian manifold) ad-

mits a unique covariant derivative operator ∇ called the Levi-Civita connection. Thus
for smooth vector fields X, Y on M , ∇XY is a vector field on M (the directional
derivative of Y in the direction X) satisfying:
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(1) ∇XY is linear in Y over the reals.

(2) ∇XY is linear in Y over the space of smooth functions. (In particular, ∇fXY =
f∇XY ).

(3) (Product rule) ∇XfY = X(f)Y + f∇XY .

(4) (Symmetric) [X, Y ] = ∇XY −∇YX.

(5) (Metric product rule) X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉.

∇ is uniquely determined by these properties. With respect to a coordinate neigh-
borhood (U, xi), one has,

∇XY = (X(Y k) + ΓkijX
iY j)∂k , (1.7)

where ∂i = ∂
∂xi

, X = X i∂i, Y = Y j∂j, and the Γkij’s are the Christoffel symbols,

Γkij =
1

2
gkm (gjm,i + gim,j − gij,m) ,

where gij = g(∂i, ∂j), etc.

We see from the coordinate expression in (1.7) that ∇XY depends only on the
value of X at a point and only on the values of Y along a curve, defined in neighbor-
hood of the point, having X as a tangent vector.

Thus the Levi-Civita connection enables one to compute the covariant derivative

of a vector field t
Y−→ Y (t) ∈ Tγ(t)M defined along a curve γ : I → M , t → γ(t). In

local coordinates γ(t) = (x1(t), ..., xn(t)), and from (1.7) we have

∇γ′Y =

(
dY k

dt
+ Γkij

dxi

dt
Y j

)
∂k . (1.8)

where γ′ = dxi

dt
∂i|γ is the tangent (or velocity) vector field along γ and Y (t) =

Y i(t)∂i|γ(t).

Geodesics. Given a curve t→ γ(t) in M , ∇γ′γ
′ is called the covariant acceleration of

γ. In local coordinates,

∇γ′γ
′ =

(
d2xk

dt2
+ Γkij

dxi

dt

dxj

dt

)
∂k , (1.9)

as follows by setting Y k = dxk

dt
in Equation (1.8). By definition, a geodesic is a curve

of zero covariant acceleration,

∇γ′γ
′ = 0 (Geodesic equation) (1.10)
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In local coordinates the geodesic equation becomes a system of n+ 1 second order
ODE’s in the coordinate functions xi = xi(t),

d2xk

dt2
+ Γkij

dxi

dt

dxj

dt
= 0 , k = 0, ..., n . (1.11)

The basic existence and uniqueness result for systems of ODE’s guarantees the fol-
lowing.

Proposition 1.2. Given p ∈M and v ∈ TpM , there exists an interval I about t = 0
and a unique geodesic σ : I →M , t→ σ(t), satisfying,

σ(0) = p ,
dσ

dt
(0) = v .

In fact, by a more refined analysis it can be shown that each p ∈M is contained in
a (geodesically) convex neighborhood U , which has the property that any two points
in U can be joined by a unique geodesic contained in U . In fact U can be chosen so as
to be a normal neighborhood of each of its points; cf. [15], p. 129. (Recall, a normal
neighborhood of p ∈ M is the diffeomorphic image under the exponential map of a
star-shaped domain about 0 ∈ TpM .)

Finally, note if γ is a geodesic then by the metric product rule, γ′(g(γ′, γ′)) =
2g(∇γ′γ

′, γ′) = 0, and hence geodesics are always constant speed curves. Thus, each
geodesic in a Lorentzian manifold is either timelike, spacelike or null. In GR timelike
geodesics correspond to freely falling observers and null geodesics correspond to the
paths of photons.

1.4 Local Lorentz geometry. In Minkowski space the geodesics are straight lines
(the Christoffel symbols vanish in Cartesian coordinates). Moreover the following
holds:

(1) If there is a timelike curve γ from p to q then pq is timelike.

(2) L(pq) ≥ L(γ), for all causal curves γ from p to q.

Although it can be very different in the large, locally the geometry and causality of
a Lorentzian manifold is similar to Minkowski space. Let U be a convex neighborhood
in a Lorentzian manifold. Hence for each pair of points p, q ∈ U there exists a unique
geodesic segment from p to q in U , which we denote by pq.

Proposition 1.3 ([15], p. 146). Let U be a convex neighborhood in a Lorentzian
manifold Mn+1.

(1) If there is a timelike (resp., causal) curve in U from p to q then pq is timelike
(causal).

(2) If pq is timelike then L(pq) ≥ L(γ) for all causal curves γ in U from p to q.
Moreover, the inequality is strict unless, when suitable parametrized, γ = pq.
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Thus, within a convex neighborhood U , timelike geodesics are maximal, i.e., are
causal curves of greatest length. Moreover, within U null geodesics are achronal, i.e.,
no two points can be joined by a timlike curve. Both of these features can fail in the
large.

1.5 Curvature and the Einstein equations
The Riemann curvature tensor of (M, g) is defined in terms of second covariant

derivatives anti-symmetrized: For vector fields X, Y, Z ∈ X(M),

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z . (1.12)

The components Rl
kij of the Riemann curvature tensor R in a coordinate chart

(U, xi) are defined by the following equation,

R(∂i, ∂j)∂k = Rl
kij∂l

The Ricci tensor is obtained by contraction,

Rij = Rl
ilj

Symmetries of the Riemann curvature tensor imply that the Ricci tensor is symmetric,
Rij = Rji. By tracing the Ricci tensor, we obtain the scalar curvature,

R = gijRij .

The Einstein equations, the field equations of GR, are given by:

Rij −
1

2
Rgij = 8πTij ,

where Tij is the energy-momentum tensor. The Einstein equations describe how
spacetime curves in the presence of matter, and it is this curvature that is responsible
for the effects of gravity. The left hand side is a purely geometric tensor, the Einstein
tensor. On the right hand side is the is the energy momentum tensor T, which
describes the energy-momentum content of matter and all other nongravitational
fields.

From the PDE point of view, the Einstein equations form a system of second
order quasi-linear equations for the gij’s. This system may be viewed as a (highly
complicated!) generalization of Poisson’s equation in Newtonian gravity.

The vacuum Einstein equations are obtained by setting Tij = 0. It is easily seen
that this equivalent to setting Rij = 0. We will sometimes require that a space-
time satisfying the Einstein equations, obeys an energy condition. The null energy
condition (NEC) is the requirement that

T (X,X) =
∑
i,j

TijX
iXj ≥ 0 for all null vectors X . (1.13)
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The stronger dominant energy condtion (DEC) is the requirement,

T (X, Y ) =
∑
i,j

TijX
iY j ≥ 0 for all future directed causal vectors X, Y . (1.14)

The DEC is satisfied by most classical fields. Physically, the DEC requires that the
speed of energy flow is less than the speed of light.

2 Futures and pasts

We begin the study of causal theory in earnest. Causal theory is the study of the
causal relations ‘�’ and ‘<’.

Let (M, g) be a spacetime. A timelike (resp. causal) curve γ : I → M is said
to be future directed provided each tangent vector γ′(t), t ∈ I, is future directed.
(Past-directed timelike and causal curves are defined in a time-dual manner.)

Definition 2.1. For p, q ∈M ,

(1) p� q means there exists a future directed timelike curve in M from p to q (we
say that q is in the timelike future of p),

(2) p < q means there exists a future directed (nontrivial) causal curve in M from
p to q (we say that q is in the causal future of p),

We shall use the notation p ≤ q to mean p = q or p < q.
The causal relations � and < are clearly transitive. Also, from variational con-

siderations, it is heuristically clear that the following holds,

if p� q and q < r or if p < q and q � r then p� r .

The above statement is a consequence of the following fundamental causality re-
sult; see [15, p. 294] for a careful proof.

Proposition 2.1. In a spacetime M , if q is in the causal future of p (p < q) but is
not in the timelike future of p (p 6� q) then any future directed causal curve γ from p
to q must be a null geodesic (when suitably parameterized).

Definition 2.2. Given any point p in a spacetime M , the timelike future and causal
future of p, denoted I+(p) and J+(p), respectively, are defined as,

I+(p) = {q ∈M : p� q} and J+(p) = {q ∈M : p ≤ q} .
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Hence, I+(p) consists of all points in M that can be reached from p by a future
directed timelike curve, and J+(p) consists of the point p and all points in M that can
be reached from p by a future directed causal curve. The timelike and causal pasts of
p, I−(p) and J−(p), respectively, are defined in a time-dual manner in terms of past
directed timelike and causal curves. Note by Proposition 2.1, if q ∈ J+(p) \ I+(p)
(q 6= p) then there exists a future directed null geodesic from p to q.

Ex. Minkowski space. For p any point in Minkowski space, I+(p) is open, J+(p) is
closed and ∂I+(p) = J+(p) \ I+(p) is just the future null cone at p. I+(p) consists of
all points inside the future null cone, and J+(p) consists of all points on and inside
the future null cone.

We note, however, that curvature and topology can drastically change the struc-
ture of ‘null cones’ in spacetime.

Ex. Consider the example depicted in the following figure of a flat spacetime cylinder,
closed in space. For any point p in this spacetime the future ‘null cone’ at p, ∂I+(p),
is compact and consists of the two future directed null geodesic segments emanating
from p that meet to the future at a point q. By extending these geodesics beyond q
we enter I+(p).

In some situations it is convenient to restrict the causal relations � and < to
open subsets U of a spacetime M . For example, I+(p, U), the chronological future
of p within U , consists of all points q in U for which there exists a future directed
timelike curve within U from p to q, etc. Note that, in general I+(p, U) 6= I+(p)∩U .
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In general the sets I+(p) in a spacetime M are open. This is heuristically rather
clear: A sufficiently small smooth perturbation of a timelike curve is still timelike. A
rigorous proof is based on the causality of convex neighborhoods.

Proposition 2.2. Let U be a convex neighborhood in a spacetime M . Then, for each
p ∈ U ,

(1) I+(p, U) is open in U (and hence M),

(2) J+(p, U) is the closure in U of I+(p, U).

This proposition follows essentially from part (1) of Proposition 1.3.

Exercise: Prove that for each p in a spacetime M , I+(p) is open.

In general, sets of the form J+(p) need not be closed. This can be seen by removing
a point from Minkowski space, as illustrated in the figure below.

Points on the dashed line are not in J+(p), but are in the closure J+(p).
For any subset S ⊂ M , we define the timelike and causal future of S, I+(S) and

J+(S), respectively by

I+(S) =
⋃
p∈S

I+(p) and J+(S) =
⋃
p∈S

J+(p) .

Thus, I+(S) consists of all points in M reached by a future directed timelike curve
starting from S, and J+(S) consists of the points of S, together with the points in
M reached by a future directed causal curve starting from S. Since arbitrary unions
of open sets are open, it follows that I+(S) is always an open set. I−(S) and J−(S)
are defined in a time-dual manner.

Although in general J+(S) 6= I+(S), the following relationships always hold be-
tween I+(S) and J+(S).

Proposition 2.3. For all subsets S ⊂M ,

(1) int J+(S) = I+(S),

(2) J+(S) ⊂ I+(S).

Proof. Exercise.
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3 Achronal boundaries

Achronal sets play an important role in causal theory. A subset S ⊂ M is achronal
provided no two of its points can be joined by a timelike curve. Of particular impor-
tance are achronal boundaries. By definition, an achronal boundary is a set of the
form ∂I+(S) (or ∂I−(S)), for some S ⊂ M . We wish to describe several important
structural properties of achronal boundaries. The following figure illustrates nicely
the properties to be discussed. It depicts the achronal boundary ∂I+(S) in Minkowski
3-space M3, where S is the disjoint union of two spacelike disks; ∂I+(S) consists of
S and the merging of two future light cones.

Proposition 3.1. An achronal boundary ∂I+(S), if nonempty, is a closed achronal
C0 hypersurface in M .

We discuss the proof of this proposition, beginning with the following basic lemma.

Lemma 3.2. If p ∈ ∂I+(S) then I+(p) ⊂ I+(S), and I−(p) ⊂M \ I+(S).

Proof. To prove the first part of the lemma, note that if q ∈ I+(p) then p ∈ I−(q),
and hence I−(q) is a neighborhood of p. Since p is on the boundary of I+(S), it
follows that I−(q)∩ I+(S) 6= ∅, and hence q ∈ I+(S). The second part of the lemma,
which can be proved similarly, is left as an exercise.

Claim 1: An achronal boundary ∂I+(S) is achronal.

Proof of the claim: Suppose there exist p, q ∈ ∂I+(S), with q ∈ I+(p). By
Lemma 3.2, q ∈ I+(S). But since I+(S) is open, I+(S) ∩ ∂I+(S) = ∅. Thus,
∂I+(S) is achronal.

Lemma 3.2 also implies that achronal boundaries are edgeless. We need to intro-
duce the edge concept.

Definition 3.1. Let S ⊂M be achronal. Then p ∈ S is an edge point of S provided
every neighborhood U of p contains a timelike curve γ from I−(p, U) to I+(p, U) that
does not meet S (see the figure).
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We denote by edgeS the set of edge points of S. Note that S \ S ⊂ edgeS ⊂ S.
If edgeS = ∅ we say that S is edgeless.

Claim 2: An achronal boundary ∂I+(S) is edgeless.

Proof of the claim: Lemma 3.2 implies that for any p ∈ ∂I+(S), any timelike curve
from I−(p) to I+(p) must meet ∂I+(S). It follows that ∂I+(S) is edgless.

Proposition 3.1 now follows from the following basic result.

Proposition 3.3. Let S be achronal. Then S \ edgeS, if nonempty, is a C0 hyper-
surface in M . In particular, an edgeless achronal set is a C0 hypersurface in M .

Proof. We sketch the proof; for details, see [15, p. 413]. It suffices to show that in a
neighborhood of each p ∈ S \ edgeS, S \ edgeS can be expressed as a C0 graph over
a smooth hypersurface.

Fix p ∈ S \ edgeS. Since p is not an edge point there exists a neighborhood U
of p such that every timelike curve from I−(p, U) to I+(p, U) meets S. Let X be a
future directed timelike vector field on M , and let N be a smooth hypersurface in U
transverse to X near p. Then, by choosing N small enough, each integral curve of X
through N will meet S, and meet it exactly once since S is achronal. Using the flow
generated by X, it follows that there is a neighborhood V ≈ (t1, t2) × N of p such
that S ∩ V is given as the graph of a function t = h(x), x ∈ N (see the figure below)

One can now show that a discontinuity of h at some point x0 ∈ N leads to an
achronality violation of S. Hence h must be continuous.

The next result shows that, in general, large portions of achronal boundaries are
ruled by null geodesics. A future (resp., past) directed causal curve γ : (a, b) → M
is said to be future (resp., past) inextendible in M if limt→b− γ(t) does not exist. A
future directed causal curve γ : (a, b)→M is said to be inextendible if γ and −γ are
future and past inextendible, respectively.
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Proposition 3.4. Let S ⊂ M be closed. Then each p ∈ ∂I+(S) \ S lies on a null
geodesic contained in ∂I+(S), which either has a past end point on S, or else is past
inextendible in M .

The proof uses a standard tool in causal theory, namely that of taking a limit of
causal curves. A technical difficulty arises however in that a limit of smooth causal
curves need not be smooth. Thus, we are lead to introduce the notion of a C0 causal
curve.

Definition 3.2. A continuous curve γ : I → M is said to be a future directed C0

causal curve provided for each t0 ∈ I, there is an open subinterval I0 ⊂ I about t0 and
a convex neighborhood U of γ(t0) such that given any t1, t2 ∈ I0 with t1 < t2, there
exists a smooth future directed causal curve in U from γ(t1) to γ(t2).

Thus, a C0 causal curve is a continuous curve that can be approximated with
arbitrary precision by a piecewise smooth causal curve.

We now give a version of the limit curve lemma (cf., [1, p. 511]). For its statement
it is convenient to introduce a background complete Riemannian (positive definite)
metric h on M . Observe that any future inextendible causal γ will have infinite length
to the future, as measured in the metric h. Hence, if parameterized with respect to
h-arc length, γ will be defined on the interval [0,∞).

Lemma 3.5 (Limit curve lemma). Let γn : [0,∞) → M be a sequence of future
inextendible causal curves, parameterized with respect to h-arc length, and suppose
that p ∈ M is an accumulation point of the sequence {γn(0)}. Then there exists
a future inextendible C0 causal curve γ : [0,∞) → M such that γ(0) = p and a
subsequence {γm} which converges to γ uniformly with respect to h on compact subsets
of [0,∞).

The proof of this lemma is an application of Arzela’s theorem; see especially the
proof of Proposition 3.31 in [1]. There are analogous versions of the limit curve lemma
for past inextendible, and (past and future) inextendible causal curves.

Remark: We note that C0 causal curves obey a local Lipschitz condition, and hence
are rectifiable. Thus, in the limit curve lemma, the γn’s could be taken to be C0

causal curves.1 We also note that the “limit” parameter acquired by the limit curve
γ need not in general be the h-arc length parameter.

Proof of Proposition 3.4. Fix p ∈ ∂I+(S) \ S. Since p ∈ ∂I+(S), there exists a
sequence of points pn ∈ I+(S), such that pn → p. For each n, let γn : [0, an] → M
be a past directed timelike curve from pn to qn ∈ S, parameterized with respect to
h-arc length. Extend each γn to a past inextendible timelike curve γ̃n : [0,∞)→ M ,
parameterized with respect to h-arc length. By the limit curve lemma, there exists a
subsequence γ̃m : [0,∞)→ M that converges to a past inextendible C0 causal curve
γ : [0,∞) → M such that γ(0) = p. By taking a further subsequence if necessary

1See [5] for a treatment of causal theory based entirely on Lipschits curves.
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we can assume am ↑ a, a ∈ (0,∞]. We claim that γ|[0,a] (or γ|[0,a) if a = ∞) is the
desired null geodesic (see the figure).

Fix t ∈ (0, a). Eventually am > t, and so for large m we have γ̃m(t) = γm(t) ∈
I+(S). Hence, since γ(t) = limm→∞ γm(t), it follows that γ(t) ∈ I+(S). Suppose
γ(t) ∈ I+(S). Then there exists x ∈ S such that x � γ(t) < p. This implies
p ∈ I+(S), contradicting that it is on the boundary. It follows that γ(t) ∈ ∂I+(S).
Thus we have shown that γ|[0,a) ⊂ ∂I+(S). Suppose for the moment γ|[0,a) is piecewise
smooth. Since ∂I+(S) is achronal, no two points of γ can be joined by a timelike
curve. It then follows from Proposition 2.1 that γ is a null geodesic. But using the
fact that C0 causal curves can be approximated by piecewise smooth causal curves,
one can show in the general case that γ|[0,a) is a null geodesic. (Exercise: Show this.)

Finally, we consider the two cases a < ∞ and a = ∞. If a < ∞, then by the
uniform convergence, γ(a) = limm→∞ γm(am) = limm→∞ qm ∈ S, since S is closed.
Thus, we have a null geodesic from p contained in ∂I+(S) that ends on S. If a =∞
then we have a null geodesic from p in ∂I+(S) that is past inextendible in M .

Achronal boundaries have been recently employed in a fundamental way to study
Lorentzian splitting problems, cf. [9].

4 Causality conditions

A number of results in Lorentzian geometry and general relativity require some sort
of causality condition. It is perhaps natural on physical grounds to rule out the
occurrence of closed timelike curves. Physically, the existence of such a curve signifies
the existence of an observer who is able to travel into his/her own past, which leads
to variety of paradoxical situations. A spacetime M satisfies the chronology condition
provided there are no closed timelike curves in M . Compact spacetimes have limited
interest in general relativity since they all violate the chronology condition.

Proposition 4.1. Every compact spacetime contains a closed timelike curve.

Proof. The sets {I+(p); p ∈M} form an open cover of M from which we can abstract
a finite subcover: I+(p1), I+(p2), ..., I+(pk). We may assume that this is the minimal
number of such sets covering M . Since these sets cover M , p1 ∈ I+(pi) for some i.
It follows that I+(p1) ⊂ I+(pi). Hence, if i 6= 1, we could reduce the number of sets
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in the cover. Thus, p1 ∈ I+(p1) which implies that there is a closed timelike curve
through p1.

A somewhat stronger condition than the chronology condition is the causality
condition. A spacetime M satisfies the causality condition provided there are no
closed (nontrivial) causal curves in M .

Exercise: Construct a spacetime that satisfies the chronology condition but not the
causality condition.

A spacetime that satisfies the causality condition can nontheless be on the verge
of failing it, in the sense that there exist causal curves that are “almost closed”, as
illustrated by the following figure.

Strong causality is a condition that rules out almost closed causal curves. An
open set U in spacetime M is said to be causally convex provided no causal curve
in M meets U in a disconnected set. Given p ∈ M , strong causality is said to hold
at p provided p has arbitrarily small causally convex neighborhoods, i.e., for each
neighborhood V of p there exists a causally convex neighborhood U of p such that
U ⊂ V . Note that strong causality fails at the point p in the figure above. In fact
strong causality fails at all points along the dashed null geodesic. It can be shown
that the set of points at which strong causality holds is open.

M is said to be strongly causal if strong causality holds at all of its points. This
is the “standard” causality condition in spacetime geometry, and, although there are
even stronger causality conditions, it is sufficient for most applications. There is an
interesting connection between strong causality and the so-called Alexandrov topology.
The sets of the form I+(p) ∩ I−(q) form the base for a topology on M , which is the
Alexandrov topology. This topology is in general more coarse than the manifold
topology of M . However it can be shown that the Alexandrov topology agrees with
the manifold topology iff M is strongly causal.

The following lemma is often useful.

Lemma 4.2. Suppose strong causality holds at each point of a compact set K in a
spacetime M . If γ : [0, b)→M is a future inextendible causal curve that starts in K
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then eventually it leaves K and does not return, i.e., there exists t0 ∈ [0, b) such that
γ(t) /∈ K for all t ∈ [t0, b).

Proof. Exercise.
In referring to the property described by this lemma, we say that a future inex-

tendible causal curve cannot be “imprisoned” or “partially imprisoned” in a compact
set on which strong causality holds.

We now come to a fundamental condition in spacetime geometry, that of global
hyperbolicity. Mathematically, global hyperbolicity is a basic ‘niceness’ condition that
often plays a role analogous to geodesic completeness in Riemannian geometry. Phys-
ically, global hyperbolicity is connected to the notion of (strong) cosmic censorship
introduced by Roger Penrose. This is the conjecture that, generically, spacetime solu-
tions to the Einstein equations do not admit naked singularities (singularities visible
to some observer).

Definition 4.1. A spacetime M is said to be globally hyperbolic provided

(1) M is strongly causal.

(2) (Internal Compactness) The sets J+(p) ∩ J−(q) are compact for all p, q ∈M .

Condition (2) says roughly that M has no holes or gaps. For example Minkowski
space is globally hyperbolic but the spacetime obtained by removing one point from
it is not. We note that it can be shown that the causality condition, together with
internal compactness, implies strong causality, so that causality could replace strong
causality in the definition of global hyperbolicity; cf. [3]. However, causality alone is
not sufficient to guarantee tthe conclusion of Lemma 4.2.

We consider a few basic consequences of global hyperbolicity.

Proposition 4.3. Let M be a globally hyperbolic spacetime. Then,

(1) The sets J±(A) are closed, for all compact A ⊂M .

(2) The sets J+(A) ∩ J−(B) are compact, for all compact A,B ⊂M .

Proof. We prove J±(p) are closed for all p ∈M, and leave the rest as an exercise.
Suppose q ∈ J+(p) \ J+(p) for some p ∈ M . Choose r ∈ I+(q), and {qn} ⊂ J+(p),
with qn → q. Since I−(r) is an open neighborhood of q, {qn} ⊂ J−(r) for n large. It
follows that q ∈ J+(p) ∩ J−(r) = J+(p) ∩ J−(r), since J+(p) ∩ J−(r) is compact and
hence closed. But this contradicts q /∈ J+(p) . Thus, J+(p) is closed, and similarly
so is J−(p).

Analogously to the case of Riemannian geometry, one can learn much about
the global structure of spacetime by studying its causal geodesics. Locally, causal
geodesics maximize Lorentzian arc length (cf., Proposition 1.3). Given p, q ∈ M ,
with p < q, we wish to consider conditions under which there exists a maximal future

16



directed causal geodesic γ from p to q, where by maximal we mean that for any future
directed causal curve σ from p to q, L(γ) ≥ L(σ).

Maximality can be conveniently expressed in terms of the Lorentzian distance
function, d : M ×M → [0,∞]. For p < q, let Ωp,q denote the collection of future
directed causal curves from p to q. Then, for any p, q ∈M , define

d(p, q) =

{
sup{L(σ) : σ ∈ Ωp,q}, if p < q

0, if p 6< q

While the Lorentzian distance function is not a distance function in the usual
sense of metric spaces, and may not even be finite valued, it does have a few nice
properties. For one, it obeys a reverse triangle inequality,

if p < r < q then d(p, q) ≥ d(p, r) + d(r, q) .

Exercise: Prove this.

We have the following basic fact.

Proposition 4.4. The Lorentzian distance function is lower semi-continuous.

Proof. Fix p, q ∈M . Given ε > 0 we need to find neighborhhoods U and V of p and
q, respectively, such that for all x ∈ U and all y ∈ V , d(x, y) > d(p, q)− ε.

If d(p, q) = 0 there is nothing to prove. Thus, we assume p < q and 0 < d(p, q) <
∞. We leave the case d(p, q) =∞ as an exercise. Let σ be a future directed timelike
curve from p to q such that L(σ) = d(p, q)−ε/3. Let U and V be convex neighborhoods
of p and q, respectively. Choose p′ on σ close to p and q′ on σ close to q. Then U ′ =
I−(p′, U) and V ′ = I+(q′, V ) are neighborhoods of p and q, respectively. Moreover,
by choosing p′ sufficiently close to p and q′ sufficiently close to q, one verifies that for
all x ∈ U ′ and y ∈ V ′, there exists a future directed timelike curve α from x to y,
containing the portion of σ from p′ to q′, having length L(α) > d(p, q)− ε/2.

Though the Lorentzian distance function is not continuous in general, it is con-
tinuous (and finite valued) for globally hyperbolic spacetimes; cf., [15, p. 412].

Given p < q, note that a causal geodesic segment γ having length L(γ) = d(p, q)
is maximal. Global hyperbolicity is the standard condition to ensure the existence of
maximal causal geodesic segments.

Proposition 4.5. Let M be a globally hyperbolic spacetime. Given p, q ∈ M , with
q ∈ I+(p), there exists a maximal future directed timelike geodesic γ from p to q
(L(γ) = d(p, q)).

Proof. The proof involves a standard limit curve argument, together with the fact
that the Lorentzian arc length functional is upper semi-continuous; see [17, p. 54].

As usual, let h be a background complete Riemannian metric on M . For each n,
let γn : [0, an]→M be a future directed timelike curve from p = γn(0) to q = γn(an),
parameterized with respect to h-arc length, such that L(γn)→ d(p, q). Extend each γn
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to a future inextendible causal curve γ̃n : [0,∞)→M , parameterized with respect to
h-arc length. By the limit curve lemma, there exists a subsequence γ̃m : [0,∞)→M
that converges to a future inextendible C0 causal curve γ : [0,∞) → M such that
γ(0) = p. By taking a further subsequence if necessary we can assume am ↑ a.
Since each γm is contained in the compact set J+(p) ∩ J−(q), it follows that γ|[0,a) ⊂
J+(p) ∩ J−(q) = J+(p) ∩ J−(q). Since M is strongly causal, it must be that a <∞,
otherwise, γ would be imprisoned in J+(p)∩ J−(q), contradicting Lemma 4.2. Then,
γ(a) = limm→∞ γm(am) = q.

Let γ̄ = γ|[0,a]. γ̄ is a future directed C0 causal curve from p to q. Moreover, by
the upper semi-continuity of L,

L(γ̄) ≥ lim sup
m→∞

L(γm) = d(p, q) ,

and so L(γ̄) = d(p, q). Hence, γ̄ has maximal length among all future directed causal
curves from p to q. This forces each sub-segment of γ̄ to have maximal length.
Using Proposition 1.3 (part (2) of which remains valid for C0 causal curves) and
Proposition 2.1, one can then argue that each sufficiently small segment of γ̄ is a
causal geodesic. (Exercise: Argue this.)

Remarks: There are simple examples showing that if either of the conditions (1) or
(2) fail to hold in the definition of global hyperbolicity then maximal segments may
fail to exist. Moreover, contrary to the situation in Riemannian geometry, geodesic
completeness does not guarantee the existence of maximal segments, as is well il-
lustrated by anti-de Sitter space which is geodesically complete. The figure be-
low depicts 2-dimensional anti-de Sitter space. It can be represented as the strip
M = {(t, x) : −π/2 < x < π/2}, equipped with the metric ds2 = sec2 x(−dt2 + dx2).
Because the anti-de Sitter metric is conformal to the Minkowski metric on the strip,
pasts and futures of both space times are the same. It can be shown that all future
directed timelike geodesics emanating from p refocus at r. The points p and q are
timelike related, but there is no timelike geodesic segment from p to q.
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Global hyperbolicity is closely related to the existence of certain ‘ideal initial value
hypersurfaces’, called Cauchy surfaces. There are slight variations in the literature
in the definition of a Cauchy surface. Here we adopt the following definition.

Definition 4.2. A Cauchy surface for a spacetime M is an achronal subset S of M
which is met by every inextendible causal curve in M .

From the definition one can easily show that if S is a Cauchy surface for M then
S = ∂I+(S) = ∂I−(S) (exercise!). It follows from Proposition 3.1 that a Cauchy
surface S is a closed achronal C0 hypersurface in M .

Theorem 4.6 (Geroch, [11]). If a spacetime M is globally hyperbolic then it has a
Cauchy surface S, and conversely.

Proof. We make a couple brief comments about the proof. The converse will be
discussed in the next section. To prove that a globally hyperbolic spacetime M
admits a Cauchy surface, one introduces a measure µ on M such that µ(M) = 1.
Consider the function f : M → R defined by

f(p) =
µ(J−(p))

µ(J+(p))
.

Internal compactness is used to show that f is continuous, and strong causality is used
to show that f is strictly increasing along future directed causal curves. Moreover,
if γ : (a, b) → M is a future directed inextendible causal curve in M , one shows
f(γ(t)) → 0 as t → a+, and f(γ(t)) → ∞ as t → b−. It follows that S = {p ∈ M :
f(p) = 1} is a Cauchy surface for M .

Remark: The function f constructed in the proof is what is referred to as a time
function, namely, a continuous function that is strictly increasing along future directed
causal curves. See e.g, [2, 7] for recent developments concerning the construction of
smooth time functions, i.e., smooth functions with timelike gradient (which hence are
necessarily time functions) and smooth spacelike Cauchy surfaces.

Proposition 4.7. Let M be gobally hyperbolic.

(1) If S is a Cauchy surface for M then M is homeomorphic to R× S.

(2) Any two Cauchy surfaces in M are homeomorphic.

Proof. To prove (1), one introduces a future directed timelike vector field X on M .
X can be scaled so that the time parameter t of each integral curve of X extends
from −∞ to ∞, with t = 0 at points of S. Each p ∈ M is on an integral curve of X
that meets S in exactly one point q. This sets up a correspondence p↔ (t, q), which
gives the desired homeomorphism. A similar technique may be used to prove (2)

In view of Proposition 4.7, any nontrivial topology in a globally hyperbolic space-
time must reside in its Cauchy surfaces.

The following fact is often useful.
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Proposition 4.8. If S is a compact achronal C0 hypersurface in a globally hyperbolic
spacetime M then S must be a Cauchy surface for M .

The proof will be discussed in the next section.

5 Domains of dependence

Definition 5.1. Let S be an achronal set in a spacetime M . We define the future
and past domains of dependence of S, D+(S) and D−(S), respectively, as follows,

D+(S) = {p ∈M : every past inextendible causal curve from p meets S},
D−(S) = {p ∈M : every future inextendible causal curve from p meets S}.

The (total) domain of dependence of S is the union, D(S) = D+(S) ∪D−(S).

In physical terms, since information travels along causal curves, a point in D+(S)
only receives information from S. Thus if physical laws are suitably causal, initial
data on S should determine the physics on D+(S) (in fact on all of D(S)).

Below we show a few examples of future and past domains of dependence.

The figure in the right shows the effect of removing a point from M . The figure
in the center shows the future domain of dependence of the spacelike hyperboloid
t2 − x2 = 1, t < 0, in the Minkowski plane.

If S is achronal, the future Cauchy horizon H+(S) of S is the future boundary of
D+(S). This is made precise in the following definition.

Definition 5.2. Let S ⊂ M be achronal. The future Cauchy horizon H+(S) of S is
defined as follows

H+(S) = {p ∈ D+(S) : I+(p) ∩D+(S) = ∅}
= D+(S) \ I−(D+(S)) .

The past Cauchy horizon H−(S) is defined time-dually. The (total) Cauchy horizon
of S is defined as the union, H(S) = H+(S) ∪H−(S). (See the figure below.)
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We record some basic facts about domains of dependence and Cauchy horizons.

Proposition 5.1. Let S be an achronal subset of M . Then the following hold.

(1) S ⊂ D+(S).

(2) If p ∈ D+(S) then I−(p) ∩ I+(S) ⊂ D+(S).

(3) ∂D+(S) = H+(S) ∪ S.

(4) H+(S) is achronal.

(5) edgeH+(S) ⊂ edge S, with equality holding if S is closed.

(4): The achronality of H+(S) follows almost immediately from the definition:
Suppose p, q ∈ H+(S) with p� q. Since q ∈ D+(S), and I+(p) is a neighborhood of
q, I+(p) meets D+(S), contradicting the definition of H+(S). We leave the proofs of
the other parts as an exercise.

Cauchy horizons have structural properties similar to achronal boundaries, as
indicated in the next two results. From Proposition 3.3 we obtain the following.

Proposition 5.2. Let S ⊂M be achronal. Then H+(S) \ edgeH+(S), if nonempty,
is an achronal C0 hypersurface in M .

In a similar vein to Proposition 3.4, we have the following.

Proposition 5.3. Let S be an achronal subset of M . Then H+(S) is ruled by null
geodesics, i.e., every point of H+(S) \ edgeS is the future endpoint of a null geodesic
in H+(S) which is either past inextendible in M or else has a past end point on
edgeS.

Comments on the proof. The proof uses a limit curve argument. Consider the case
p ∈ H+(S)\S. Since I+(p)∩D+(S) = ∅, we can find a sequence of points pn /∈ D+(S),
such that pn → p. For each n, there exists a past inextendible causal curve γn that
does not meet S. By the limit curve lemma there exists a subsequence γm that
converges to a past inextendible C0 causal curve γ starting at p. Near p this defines
the desired null geodesic (see the figure below).
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The case p ∈ S\edgeS is handled somewhat differently; for details see [18, p. 203].

The next proposition follows straight-forwardly from definitions, together with the
fact that, for S achronal, ∂D(S) = H(S) (exercise).

Proposition 5.4. Let S be an achronal subset of a spacetime M . Then, S is a
Cauchy surface for M if and only if D(S) = M if and only if H(S) = ∅.

The following basic result ties domains of dependence to global hyperbolicity.

Proposition 5.5. Let S ⊂M be achronal.

(1) Strong causality holds on intD(S).

(2) Internal compactness holds on intD(S), i.e., for all p, q ∈ intD(S), J+(p) ∩
J−(q) is compact.

Comments on the proof. With regard to (1), first observe that the chronology con-
dition holds on D(S). For instance, suppose there exists a timelike curve γ passing
through p ∈ D+(S), and take γ to be past directed. By repeating loops we obtain a
past inextendible timelike curve γ̃, which hence must meet S. In fact, it will meet S
infinitely often, thereby violating the achronality of S. A similar argument shows that
the causality condition holds on intD(S). Suppose for example that γ is a past di-
rected closed causal curve through p ∈ intD+(S). By repeating loops we obtain a past
inextendible causal curve γ̃ starting at p. Thus γ̃ meets S, and since p ∈ intD+(S),
will enter I−(S) (see Lemma 5.8 below). This again leads to an achronality violation.
By more refined arguments, using the limit curve lemma, one can show that strong
causality holds on intD(S). With regard to (2), suppose there exist p, q ∈ intD(S),
such that J+(p) ∩ J−(q) is noncompact. We want to show that every sequence qn
in J+(p) ∩ J−(q) has a convergent subsequence. Without loss of generality we may
assume {qn} ⊂ D−(S). For each n, let γn be a future directed causal curve from p
to q passing through qn. As usual, extend each γn to a future inextendible causal
curve γ̃n. By the limit curve lemma, there exists a subsequence γ̃m that converges to
a future inextendible C0 causal curve γ starting at p. One can then show that either
the sequence of points qm converges or γ does not enter I+(S).

We can now address the converse part of Theorem 4.6.
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Corollary 5.6. If S is a Cauchy surface for M then M is globally hyperbolic.

Proof. This follows immediately from Propositions 5.4 and 5.5: S Cauchy =⇒
D(S) = M =⇒ intD(S) = M =⇒ M is globally hyperbolic.

We now give a proof of Proposition 4.8 from the previous section.

Proof of Proposition 4.8. It suffices to show that H(S) = H+(S) ∪H−(S) = ∅. Sup-
pose there exists p ∈ H+(S). Since S is edgeless, it follows from Proposition 5.3
that p is the future endpoint of a past inextendible null geodesic γ ⊂ H+(S). Then
since γ ⊂ D+(S)∩ J−(p) (exercise: show this), we have that γ is contained in the set
J+(S)∩ J−(p), which is compact by Proposition 4.3. By Lemma 4.2 strong causality
must be violated at some point of J+(S)∩ J−(p). Thus H+(S) = ∅, and time-dually,
H−(S) = ∅.

We conclude this section by stating several lemmas that are useful in proving
some of the results described here, as well as other results concerning domains of
dependence.

Lemma 5.7 ([15], p. 416). Let γ be a past inextendible causal curve starting at p that
does not meet a closed set C. If p0 ∈ I+(p,M \ C), there exists a past inextendible
timelike curve starting at p0 that does not meet C.

Proof. Exercise.

Lemma 5.8. Let S be achronal. If p ∈ intD+(S) then every past inextendible causal
curve from p enters I−(S).

Proof. This follows from the proof of the preceding lemma.

Lemma 5.9. Let S be achronal. Then p ∈ D+(S) iff every past inextendible timelike
curve meets S.

Proof. Exercise.

6 The geometry of null hypersurfaces

In addition to curves, one can discuss the causality of certain higher dimensional
submanifolds. For example, a spacelike hypersurface is a hypersurface all of whose
tangent vectors are spacelike, or, equivalently, whose normal vectors are timelike:
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More precisely, a hypersurface is spacelike if the induced metric is positive definite
(i.e. Riemannian). In GR, a spacelike hypersurface represents space at a given instant
of time.

A null hypersurface is a hypersurface such that the null cone is tangent to at each
of its points:

Null hypersurfaces play an important role in GR as they represent horizons of various
sorts. For example the event horizons in the Schwarzschild and Kerr spacetimes are
null hypersurfaces. Null hypersurfaces have an interesting geometry which we would
like to discuss in this section.

In more precise terms a null hypersurface in a spacetime (M, g) is a smooth co-
dimension one submanifold S of M , such that at each p ∈ M , g : TpS × TpS → R is
degenerate. This means that there exists a nonzero vector Kp ∈ TpS (the direction
of degeneracy) such that

〈Kp, X〉 = 0 for all X ∈ TpS

where we have introduced the shorthand metric notation: 〈U, V 〉 = g(U, V ). In
particular,

(1) Kp is a null vector, 〈Kp, Kp〉 = 0, which we can choose to be future pointing,
and

(2) [Kp]
⊥ = TpS.

(3) Moreover, every (nonzero) vector X ∈ TpS that is not a multiple of Kp is
spacelike.

Thus, every null hypersurface S gives rise to a future directed null vector field K,

p ∈ S K−→ Kp ∈ TpS,

which will be smooth, K ∈ X(S), provided it is normalized in a suitably uniform way.
Furthermore, the null vector field K is unique up to a positive pointwise scale factor.

As simple examples, in Minkowski space Mn+1, the past and future cones, ∂I−(p)
and ∂I+(p), respectively, are smooth null hypersurfaces away from the vertex p. Each
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nonzero null vector X ∈ TpMn+1 determines a null hyperplane Π = {q ∈ Mn+1 :
〈pq,X〉} = 0.

The following fact is fundamental.

Proposition 6.1. Let S be a smooth null hypersurface and let K ∈ X(S) be a smooth
future directed null vector field on S. Then the integral curves of K are null geodesics
(when suitably parameterized),

Remark: The integral curves of K are called the null generators of S. Apart from
parameterizations, the null generators are intrinsic to the null hypersurface.

Proof. It suffices to show that ∇KK = λK, for then the integral curves are in general
pre-geodesics (i.e., are geodesics after a suitable reparameterization). To show this it
suffice to show that at each p ∈ S, ∇KK ⊥ TpS, i.e., 〈∇KK,X〉 = 0 for all X ∈ TpS.

Extend X ∈ TpS by making it invariant under the flow generated by K,

[K,X] = ∇KX −∇XK = 0

X remains tangent to S, so along the flow line through p, 〈K,X〉 = 0. Differentiating
we obtain,

0 = K〈K,X〉 = 〈∇KK,X〉+ 〈K,∇KX〉 ,
and hence,

〈∇KK,X〉 = −〈K,∇KX〉 = −〈K,∇XK〉 = −1

2
X〈K,K〉 = 0 .

To study the ‘shape’ of the null hypersurface S we study how the null vector field
K varies along S. Since K is actually orthogonal to S, this is somewhat analogous
to how we study the shape of a hypersurface in a Riemannian manifold, or spacelike
hypersurface in a Lorentzian manifold, by introducing the shape operator (or Wein-
garten map) and associated second fundamental form. We proceed to introduce null
analogues of these objects. For technical reasons one works “mod K”, as described
below.

We introduce the following equivalence relation on tangent vectors: For X,X ′ ∈
TpS,

X ′ = X mod K if and only if X ′ −X = λK for some λ ∈ R .

Let X denote the equivalence class of X. Let TpS/K = {X : X ∈ TpS}, and
TS/K = ∪p∈STpS/K. TS/K, the mod K tangent bundle of S, is a smooth rank
n − 1 vector bundle over S. This vector bundle does not depend on the particular
choice of null vector field K.
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There is a natural positive definite metric h on TS/K induced from 〈 , 〉: For each
p ∈ S, define h : TpS/K × TpS/K → R by h(X,Y ) = 〈X, Y 〉. A simple computation
shows that h is well-defined: If X ′ = X mod K, Y ′ = Y mod K then

〈X ′, Y ′〉 = 〈X + αK, Y + βK〉
= 〈X, Y 〉+ β〈X,K〉+ α〈K,Y 〉+ αβ〈K,K〉
= 〈X, Y 〉 .

The null Weingarten map b = bK of S with respect to K is, for each point p ∈ S,
a linear map b : TpS/K → TpS/K defined by b(X) = ∇XK.

Exercise: Show that b is well-defined. Show also that that if K̃ = fK, f ∈ C∞(S), is
any other future directed null vector field on S, then bK̃ = fbK . It follows that the

Weingarten map b = bK at a point p is uniquely determined by the value of K at p.

Proposition 6.2. b is self adjoint with respect to h, i.e., h(b(X), Y ) = h(X, b(Y )),
for all X,Y ∈ TpS/K.

Proof. Extend X, Y ∈ TpS to vector fields tangent to S near p. Using X〈K,Y 〉 = 0
and Y 〈K,X〉 = 0, we obtain,

h(b(X), Y ) = 〈∇XK,Y 〉 = −〈K,∇XY 〉 = −〈K,∇YX〉+ 〈K, [X, Y ]〉
= 〈∇YK,X〉 = h(X, b(Y )) .

The null second fundamental form B = BK of S with respect to K is the bilinear
form associated to b via h: For each p ∈ S, B : TpS/K × TpS/K → R is defined by,

B(X,Y ) = h(b(X), Y ) = 〈∇XK,Y 〉 .
Since b is self-adjoint, B is symmetric. We say that S is totally geodesic iff B ≡ 0.
This has the usual geometric meaning: If S is totally geodesic then any geodesic
in M starting tangent to S stays in S. This follows from the fact that, when S is
totally geodesic, the restriction to S of the Levi-Civita connection of M defines a
linear connection on S. Null hyperplanes in Minkowski space are totally geodesic, as
is the event horizon in Schwarzschild spacetime.

The null mean curvature (or null expansion scalar) of S with respect to K is the
smooth scalar field θ on S defined by, θ = tr b. θ has a natural geometric interpreta-
tion. Let Σ be the intersection of S with a hypersurface in M which is transverse to
K near p ∈ S; Σ will be a co-dimension two spacelike submanifold of M , along which
K is orthogonal.
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Let {e1, e2, · · · , en−1} be an orthonormal basis for TpΣ in the induced metric. Then
{e1, e2, · · · , en−1} is an orthonormal basis for TpS/K. Hence at p,

θ = tr b =
n−1∑
i=1

h(b(ei), ei) =
n−1∑
i=1

〈∇eiK, ei〉.

= divΣK . (6.15)

where divΣK is the divergence of K along Σ. Thus, θ measures the overall expansion
of the null generators of S towards the future.

It follows from the exercise on the preceeding page that if K̃ = fK then θ̃ = fθ.
Thus the null mean curvature inequalities θ > 0, θ < 0, etc., are invariant under
positive rescaling of K. In Minkowski space, a future null cone S = ∂I+(p) \ {p}
(resp., past null cone S = ∂I−(p) \ {p}) has positive null mean curvature, θ > 0
(resp., negative null mean curvature, θ < 0).

We now study how the null Weingarten map propagates along the null geodesic
generators of S. Let η : I →M , s→ η(s), be a future directed affinely parameterized
null geodesic generator of S. For each s ∈ I, let

b(s) = bη′(s) : Tη(s)S/η
′(s)→ Tη(s)S/η

′(s) (6.16)

be the Weingarten map based at η(s) with respect to the null vector K = η′(s). We
show that the one parameter family of Weingarten maps s → b(s), obeys a certain
Riccati equation.

We first need to make a few definitions. Let s → Y(s) be a TS/K vector field
along η, i.e., for each s ∈ I, Y(s) ∈ Tη(s)S/K. We say that s → Y(s) is smooth if,
at least locally, there is a smooth (in the usual sense) vector field s → Y (s) along
η, tangent to S, such that Y(s) = Y (s). Then define the covariant derivative of
s→ Y(s) along η by, Y ′(s) = Y ′(s), where Y ′ is the usual covariant differentiation.

Exercise: Show that Y ′ is independent of the choice of Y .

Then the covariant derivative of b along η is defined by requiring a natural product
rule to hold. If s→ X(s) is a vector field along η tangent to S, b′ is defined by,

b′(X) = b(X)′ − b(X ′) . (6.17)

Proposition 6.3. The one parameter family of Weingarten maps s → b(s), obeys
the following Riccati equation,

b′ + b2 +R = 0 , (6.18)

where R : Tη(s)S/η
′(s) → Tη(s)S/η

′(s) is the curvature endomorphism defined by

R(X) = R(X, η′(s))η′(s).
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Proof. Fix a point p = η(s0), s0 ∈ (a, b), on η. On a neighborhood U of p in S we
can scale the null vector field K so that K is a geodesic vector field, ∇KK = 0, and
so that K, restricted to η, is the velocity vector field to η, i.e., for each s near s0,
Kη(s) = η′(s). Let X ∈ TpM . Shrinking U if necessary, we can extend X to a smooth
vector field on U so that [X,K] = ∇XK −∇KX = 0. Then,

R(X,K)K = ∇X∇KK −∇K∇XK −∇[X,K]K = −∇K∇KX .

Hence along η we have, X ′′ = −R(X, η′)η′ (which implies that X, restricted to η, is
a Jacobi field along η). Thus, from Equation 6.17, at the point p we have,

b′(X) = ∇XK
′ − b(∇KX) = ∇KX

′ − b(∇XK)

= X ′′ − b(b(X)) = −R(X, η′)η′ − b2(X)

= −R(X)− b2(X),

which establishes Equation 6.18.
By taking the trace of (6.18) we obtain the following formula for the derivative of

the null mean curvature θ = θ(s) along η,

θ′ = −Ric(η′, η′)− σ2 − 1

n− 1
θ2, (6.19)

where σ := (tr b̂2)1/2 is the shear scalar, b̂ := b− 1
n−1

θ · id is the trace free part of the

Weingarten map, and Ric(η′, η′) = Rij(η
i)′(ηj)′ is the Ricci tensor contracted on the

tangent vector η′. Equation 6.19 is known in relativity as the Raychaudhuri equation
(for an irrotational null geodesic congruence) . This equation shows how the Ricci
curvature of spacetime influences the null mean curvature of a null hypersurface.

The following proposition is a standard application of the Raychaudhuri equation.

Proposition 6.4. Let M be a spacetime which obeys the null enery condition (NEC),
Ric (X,X) ≥ 0 for all null vectors X, and let S be a smooth null hypersurface in M .
If the null generators of S are future geodesically complete then S has nonnegative
null mean curvature, θ ≥ 0.

Proof. Suppose θ < 0 at p ∈ S. Let s → η(s) be the null generator of S passing
through p = η(0), affinely parametrized. Let b(s) = bη′(s), and take θ = tr b. By the
invariance of sign under scaling, one has θ(0) < 0. Raychaudhuri’s equation and the
NEC imply that θ = θ(s) obeys the inequality,

dθ

ds
≤ − 1

n− 1
θ2 , (6.20)

and hence θ < 0 for all s > 0. Dividing through by θ2 then gives,

d

ds

(
1

θ

)
≥ 1

n− 1
, (6.21)
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which implies 1/θ → 0, i.e., θ → −∞ in finite affine parameter time, contradicting
the smoothness of θ.

Exercise. Let Σ be a local cross section of the null hypersurface S, as depicted on
p. 26, with volume form ω. If Σ is moved under flow generated by K, show that
LKω = θ ω, where L = Lie derivative.

Thus, Proposition 6.4 implies, under the given assumptions, that cross sections
of S are nondecreasing in area as one moves towards the future. Proposition 6.4 is
the simplest form of Hawking’s black hole area theorem [12]. For a study of the area
theorem, with a focus on issues of regularity, see [6].

7 Trapped surfaces and the Penrose Singularity

Theorem

In this section we introduce the important notion of a trapped surface and present
the classical Penrose singularity theorem.

Let (Mn+1, g) be an (n + 1)-dimensional spacetime, with n ≥ 3. Let Σn−1 be a
closed (i.e., compact without boundary) co-dimension two spacelike submanifold of
M . Each normal space of Σ, [TpΣ]⊥, p ∈ Σ, is timelike and 2-dimensional, and hence
admits two future directed null directions orthogonal to Σ.

Thus, under suitable orientation assumptions, Σ admits two smooth nonvanishing
future directed null normal vector fields l+ and l− (unique up to positive rescaling).
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and if its generators are future complete then Proposition 7.1 implies that E has
nonnegative null expansion. This in turn implies that “cross-sections” of E are
nondecreasing in area as one moves towards the future, as asserted by the area
theorem. In the context of black hole thermodynamics, the area theorem is referred
to as the second law of black mechanics, and provides a link between gravity and
quantum physics. As it turns out, the area theorem remains valid without imposing
any smoothness assumptions; for a recent study of the area theorem, which focuses
on these issues of regularity, see [131].

7.2. Trapped and marginally trapped surfaces. We begin with some defini-
tions. Let Σ = Σn−1, n ≥ 3, be a spacelike submanifold of co-dimension two in a
space-time (M n+1, g). Regardless of the dimension of space-time, we shall refer to
Σ as a surface, which it actually is in the 3 + 1 case. We are primarily interested
in the case where Σ is compact (without boundary), and so we simply assume this
from the outset.

Each normal space of Σ, [TpΣ]
⊥, p ∈ Σ, is timelike and 2-dimensional, and

hence admits two future directed null directions orthogonal to Σ. Thus, if the
normal bundle is trivial, Σ admits two smooth nonvanishing future directed null
normal vector fields l+ and l−, which are unique up to positive pointwise scaling,
see Figure 7.1. By convention, we refer to l+ as outward pointing and l− as inward
pointing.21 In relativity it is standard to decompose the second fundamental form

l− l+

Figure 7.1. The null future normals l± to Σ.

of Σ into two scalar valued null second forms χ+ and χ−, associated to l+ and l−,
respectively. For each p ∈ Σ, χ± : TpΣ× TpΣ → R is the bilinear form defined by,

χ±(X,Y ) = g(∇X l±, Y ) for all X,Y ∈ TpΣ .(7.5)

A standard argument shows that χ± is symmetric. Hence, χ+ and χ− can be traced
with respect to the induced metric γ on Σ to obtain the null mean curvatures (or
null expansion scalars),

(7.6) θ± = trγ χ± = γij(χ±)ij = divΣl± .

θ± depends on the scaling of l± in a simple way. As follows from Equation (7.5),
multiplying l± by a positive function f simply scales θ± by the same function.
Thus, the sign of θ± does not depend on the scaling of l±. Physically, θ+ (resp.,
θ−) measures the divergence of the outgoing (resp., ingoing) light rays emanating
from Σ.

It is useful to note the connection between the null expansion scalars θ± and the
expansion of the generators of a null hypersurface, as discussed in Section 7.1. Let
N+ be the null hypersurface, defined and smooth near Σ, generated by the null

21In many situations, there is a natural choice of “inward” and “outward”.

By convention, we refer to l+ as outward pointing and l− as inward pointing.
Associated to l+ and l−, are the two null second fundamental forms, χ+ and χ−,

respectively, defined as

χ± : TpΣ× TpΣ→ R, χ±(X, Y ) = g(∇X l±, Y ) . (7.22)

The null expansion scalars (or null mean curvatures) θ± of Σ are obtained by tracing
χ± with respect to the induced metric γ on Σ,

θ± = trγχ± = γABχ±AB = div Σl± . (7.23)

It can be seen that the sign of θ± does not depend on the scaling of l±. Physically,
θ+ (resp., θ−) measures the divergence of the outgoing (resp., ingoing) light rays
emanating orthogonally from Σ.

It is useful to note the connection between the null expansion scalars θ± and the
expansion of the generators of a null hypersurface, as discussed in Section 6. Let S+
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be the null hypersurface, defined and smooth near Σ, generated by the null geodesics
passing through Σ with initial tangents l+. Then θ+ is the null expansion of S+

restricted to Σ; θ− may be described similarly.
For round spheres in Euclidean slices of Minkowski space, with the obvious choice

of inside and outside, one has θ− < 0 and θ+ > 0.

§

 0> +µ 0< {µ

In fact, this is the case in general for large “radial” spheres in asymptotically flat
spacelike hypersurfaces. However, in regions of spacetime where the gravitational field
is strong, one may have both θ− < 0 and θ+ < 0, in which case Σ is called a trapped
surface. As we now discuss, under appropriate energy and causality conditions, the
occurrence of a trapped surface signals the onset of gravitational collapse [16]. See
[4, 13] for results concerning the dynamical formation of trapped surfaces.

The Penrose singularity theorem [16] is the first of the famous singularity theorems
of general relativity. The singularity theorems establish, under generic circumstances,
the existence in spacetime of incomplete timelike or null geodesics. Such incomplete-
ness indicates that spacetime has come to an end either in the past or future. In
specific models past incompleteness is typically associated with a “big bang” begin-
ning of the universe, and future incompleteness is typically associated with a “big
crunch” (time dual of the big bang), or, of a more local nature, gravitational collapse
to a black hole. The Penrose singularity theorem is associated with the latter.

All the classical singularity theorems require energy conditions. The Penrose
singularity theorem requires that Ric(X,X) ≥ 0 for all null vectors X. Note that
for spacetimes satisfying the Einstein equations, this is just the null energy condition
(NEC), cf. Equation (1.13).

In studying an isolated gravitating system, such as the collapse of a star and
formation of a black hole, it is customary to model this situation by a spacetime
which is asymptotically flat (i.e., asymptotically Minkowskian). In this context, the
assumption of the Penrose singularity theorem that spacetime admit a noncompact
Cauchy surface is natural.

The key concept introduced by Penrose in this singularity theorem is that of
the trapped surface, as discussed above. What Penrose proved is that once the
gravitational field becomes sufficiently strong that trapped surfaces appear (as they
do in the Schwarzschild solution) then the development of singularities is inevitable.

Theorem 7.1. Let M be a globally hyperbolic spacetime with noncompact Cauchy
surfaces satisfying the NEC. If M contains a trapped surface Σ then M is future null
geodesically incomplete.
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Suppose that M is future null geodesically complete. We show that the achronal
boundary ∂I+(Σ) is compact. Since ∂I+(Σ) is closed, if ∂I+(Σ) is noncompact, there
exists a sequence of points {qn} ⊂ ∂I+(Σ) that diverges to infinity in M , i.e., that
does not have a convergent subsequence in M . Since, by Proposition 4.3, J+(Σ) is
closed, we have,

∂I+(Σ) = ∂J+(Σ) = J+(Σ) \ I+(Σ) . (7.24)

Hence, by Proposition 2.1, there exists a future directed null geodesic ηn; [0, an]→M
from some point pn ∈ Σ to qn, which is contained in ∂I+(Σ). In particular, ηn must
meet Σ orthogonally at pn (otherwise qn ∈ I+(Σ), cf. [15, Lemma 50, p. 298]).

Since Σ is compact there exists a subsequence {pm} of {pn}, such that pm →
p ∈ Σ. It follows that the sequence {ηm} converges in the sense of geodesics to a
future complete null normal normal geodesic η : [0,∞)→ M , starting at p, which is
contained in ∂I+(Σ). Without loss of generality we may assume η is outward pointing,
i.e., η′(0) = l+(p). By Equation (7.24), there can be no timelike curve from a point
of Σ to a point of η. This implies that no outward pointing null normal geodesic can
meet η, for they would have to meet in a corner. A point further out on η would
then be timelike related to Σ. On similar grounds, there can be no null focal point to
Σ along η, i.e., no point on η where nearby outward pointing null normal geodesics
cross η “to first order” ([15, Prop. 48, p. 296]). This implies that the exponential
map, restricted to the null normal bundle of Σ, is nonsingular along η (see [15], Prop.
30, p. 283 and Cor. 40, p. 290). It follows that for any a > 0, the segment η|[0,a], is
contained in a smooth null hypersurface S, generated by the outward pointing null
normal geodesics emanating from a sufficiently small neighborhood of p in Σ. Since
Σ is a trapped surface, θ+(p) < 0. Choose a > n−1

|θ+(p)| .

Let s → θ(s) be the null mean curvature of S along η. By assumption, θ(0) =
θ+(p) < 0. As in the proof of Proposition 6.4, the Raychaudhuri equation (6.19) and
the NEC imply the differential inequality (6.21), from which it follows that θ → −∞
in an affine parameter time ≤ n−1

|θ+(p)| < a, contradicting the smoothness of S in a

neighborhood of η|[0,a].
Thus we have shown that if M is future null geodesically complete then ∂I+(Σ)

is compact. It now follows from Propositions 3.1 and 4.8 that ∂I+(Σ) is a compact
Cauchy surface for M , contrary assumption.

For certain applications, the following variant of the Penrose singularity theorem
is useful.

Theorem 7.2. Let M be a globally hyperbolic spacetime satisfying the null energy
condition, with smooth spacelike Cauchy surface V . Let Σ be a smooth closed (compact
without boundary) hypersurface in V which separates V into an “inside” U and an
“outside” W , i.e., V \ Σ = U ∪ W where U,W ⊂ V are connected disjoint sets.
Suppose, further, that W is non-compact. If Σ is outer-trapped ( θ+ < 0) then M
is future null geodesically incomplete.
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Proof. Exercise. Hint: Consider the achronal boundary ∂I+(U) and argue similarly
to the proof of the Penrose singularity theorem.

This version of the Penrose singularity theorem may be used to prove the following
beautiful result of Gannon [10] and Lee [14].

Theorem 7.3. Let M be a globally hyperbolic spacetime which satisfies the null energy
condition and which contains a smooth asymptotically flat spacelike Cauchy surface
V . If V is not simply connected (π1(V ) 6= 0) then M is future null geodesically
incomplete.

Thus, as suggested by this theorem, nontrivial topology tends to induce gravita-
tional collapse. In the standard collapse scenario (based on the weak cosmic censorship
conjecture) the process of gravitational collapse leads to the formation of an event
horizon which shields the singularities from view. According to the principle of topo-
logical censorship the nontrivial topology that induced collapse should end up behind
hidden the event horizon, and the region outside the black hole should have simple
topology. There are a number of results supporting this view. See [8] for further
discussion, relevant references and related results.

Exercise: Let M be a globally hyperbolic spacetime which satisfies the null energy
condition and which contains a smooth asymptotically flat spacelike Cauchy surface
V . Use Theorem 7.2 to show that if V has more than one asymptotically flat end
then M is future null geodesically incomplete. Thus, in Theorem 7.3 one might as
well assume that V has only one asymptotically flat end.
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