1. Let V be a vector space. Prove that the list (v_1, \ldots, v_n) is a basis for V if and only if each $v_i \neq 0$ and $V = \langle v_1 \rangle \oplus \ldots \oplus \langle v_n \rangle$.

2. Let V be a finite dimensional vector space and let W be a subspace. Prove that $V \cong W \oplus V/W$.

3. Let V be a finite dimensional vector space and let \hat{V} be the dual space. Prove that if $v_1 \neq v_2$ in V then there is an $f \in \hat{V}$ such that $f(v_1) \neq f(v_2)$.

4. Let V be a vector space over the field F. Let $T : V \to V$ be a linear map. Let V_T be the $F[x]$-module on the set V with same addition as V and with scalar multiplication given by $f(x)v := f(T)(v)$. Show V_T is an $F[x]$-module.

5. Let A and B be submodules of R-module M. Prove

 (a) $A \cap B$ is a submodule of M.
 (b) $A + B$ is a submodule of M
 (c) $(A + B)/B$ is isomorphic to $A/(A \cap B)$.

6. Let M be an R-module and let U_1, \ldots, U_n be submodules. Prove $M = U_1 \oplus \ldots \oplus U_k$ and only if $M = U_1 + \ldots + U_k$ and $U_i \cap (U_1 + \ldots + U_{i-1}) = \{0\}$ for all $i \geq 2$.

7. Let $R = \{ f(x) \in \mathbb{Z}[x] : f(x) = a_0 + a_2x^2 + \ldots + a_nx^n \}$.

 (a) Show $\mathbb{Z}[x]$ is an R-module.
 (b) Show $\{1, x\}$ is a minimal generating set.
 (c) Show the R-module $\mathbb{Z}[x]$ does not decompose into a direct sum of cyclic submodules.

8. An R-module is said to be irreducible if its only submodules are $\{0\}$ and M. Suppose that R has unity and M is a unital irreducible R-module. Show that M is cyclic.