Solutions

Trench = \left[T \right]

\(\text{(a)} \) \(P(n) \Rightarrow P(n+1) \) \text{ proof}

\(P(n+1) \) is \(1 + 2 + \ldots + n + n+1 = \frac{(n+3)n}{2} \).

If \(P(n) \) is true, then the left hand side is \(\frac{(n+2)(n-1)}{2} + (n+1) = \frac{(n+2)(n-1) + 2n+2}{2} \)

\[= \frac{n^2 + n - 2 + 2n + 2}{2} = \frac{n(n+3)}{2} \Rightarrow P(n+1) \]

\textbf{Answer: \(\bigcirc \)}

\(\text{(b)} \) We know that, in fact,

\[1 + 2 + \ldots + n = \frac{n(n+1)}{2} \text{ (prove)}. \]

If there existed \(n \) so that \(P(n) \) true, since \((a) \) is true, \(P(n) \) would be true for all \(n \geq n_0 \). But \(\frac{n(n+1)}{2} + \frac{(n+2)(n-1)}{2} \) for large \(n \).
The inequality \(\frac{1}{n!} > \frac{8^n}{(2n)!} \) is true for \(n > n_0 \), \(n_0 \) to be determined.

For \(n < n_0 \) we have to check one by one.

Let's see when is the induction step true.

If \(\frac{1}{n!} > \frac{8^n}{(2n)!} \) \(\Rightarrow \frac{1}{(n+1)!} > \frac{8^{n+1}}{(2n+2)!} \).

Re-write as: \(\frac{(2n)!}{8^n \cdot n!} > 1 \) \(\Rightarrow \frac{(2n+2)!}{(n+1)! \cdot 8^{n+1}} > 1 \).

If the left hand side is true, then the right hand side is

\[
\frac{(2n)!}{8^n \cdot n!} \cdot \frac{(2n+1)(2n+2)}{8 \cdot (n+1)} > 1 \cdot \frac{2n+1}{4}
\]

which exceeds 1 as soon as \(n \geq 2 \).

This does not mean the statement is true for \(n \geq 2 \).
Verify

\[
\frac{(2n)!}{8^n n!} = \frac{(n+1)(n+2) \ldots (n+n)}{8^n}
\]

\[
\begin{align*}
n &= 1 & \text{false} \\
n &= 2 & \text{false} \\
n &= 5 & \text{false} \\
n &= 6 & \text{true} \\
n &> 6
\end{align*}
\]

Answer

\[
\begin{align*}
n &= 1, 2, 3, 4, 5 & \text{false} \\
n &> 6 & \text{true}
\end{align*}
\]
Let $a_1 = a_2 = 5$ and

$$a_{n+1} = a_n + 6a_{n-1}, \quad m \geq 2$$

Show that $a_n = 3^n - (-2)^n$ if $n \geq 1$.

In general, when we have

$$a_{n+1} = Aa_n + B a_{n-1}$$

we solve the characteristic eq

$$A^2 = A + B$$

1. If it has two distinct roots d_1, d_2
 (here $\lambda_1 = -2$, $\lambda_2 = +3$)
 then the solution is

$$a_n = c_1d_1^n + c_2d_2^n$$

where c_1, c_2 can be found from a_1, a_2.

2. If $d_1 = d_2 = d$, then use
 with $d_1^m \rightarrow d_1^m$ and $d_2^m \rightarrow nd_1^m$.
The Fibonacci numbers can be found in many textbooks with many interesting properties.

The reason why
\[F_{n+1} = F_n + F_{n-1} \]
\[F_1 = F_2 = 1 \]
has a formula involving \(\sqrt{5} \) is given by the characteristic eq.
of the recurrence

\[d^2 = d + 1 \implies d^2 - d - 1 = 0 \]
\[d = \frac{1 \pm \sqrt{5}}{2} \]

\[F_n = c_1 \left(\frac{1 - \sqrt{5}}{2} \right)^n + c_2 \left(\frac{1 + \sqrt{5}}{2} \right)^n \]

with the correct choice of \(c_1, c_2 \) giving the formulae in the text.
(you can still do it by induction)
Section 1.1

1. (a) \(\text{No} \) \(1 \notin S \) in general \(N \neq S \)

(b) Would imply that all naturals are squares of rationals, i.e. \(\sqrt{2} \in \mathbb{Q} \)
 False. Answer \(\text{NO} \)

(c) \(\sqrt{2} + 5 - \sqrt{2} = 5 \in \mathbb{Q} \)
 Yet \(\sqrt{2} \notin \mathbb{Q} \) and if \(5 - \sqrt{2} = p \in \mathbb{Q} \)
 \(\implies \sqrt{2} = 5 - p \in \mathbb{Q} \) false.
 We gave an example of two irrationals with sum \(\in \mathbb{Q} \). Statement (c) false

(d) \(\sqrt{2} \cdot \frac{1}{\sqrt{2}} = 1 \in \mathbb{Q} \) yet
 \(\sqrt{2}, \frac{1}{\sqrt{2}} \notin \mathbb{Q} \). False

(e) \(\text{true} \). If \(n \) were even, \(n = 2k \)
 \(k \in \mathbb{N} \). Then \(n^2 = 4k^2 = 2(2k^2) \) even.
 So \(n^2 \) cannot be odd unless \(n \) odd as well.
(a) False. \[S = (1, 2) \] bounded by \(M = 3 \) yet \(\sup S = 2 \notin S \).

(b) True. Since \(\forall s \in S, s > 0 \)

\[\Rightarrow 0 \text{ is a lower bound for } S \]

\[\Rightarrow 0 \leq \inf S \]

(c) True. Let \(b \in B \). Since \(B \subseteq S \)

\[\Rightarrow b \in S \Rightarrow b \leq \sup S \]

Since \(\forall b \in B, b \leq \sup S \Rightarrow \sup S \]

is an upper bound of \(B \). \(\Rightarrow \sup B \leq \sup S \).

(4) in 1.1. How to guess the answer?

One way is to see that.

\[3j^2 + 3j = (j+1)^3 - j^3 - 1 \]

When we add them up from \(j = 1 \) to \(j = n \)

we obtain.

\[3 \sum_{j=1}^{n} j(j+1) = (n+1)^3 - 3 - n \]

\[\text{Sum} = \frac{(n+1)n(n+2)}{3} \quad \text{prove it by induction} \]
(a) \(\frac{1}{n} \) is decreasing in \(n \)

then all elements \(\sup S \leq 1 \) achieved for \(n = 1 \). Since the set has a largest element (equal 1) it must be

\[\sup S = \max S = 1 \quad (\text{for } n=1). \]

We shall show \(\inf_{n \geq 1} (\frac{1}{n}) = 0 \).

Since \(0 < \frac{1}{n} \geq 4n > 1 \)

\[\Rightarrow 0 \leq \inf S. \]

Let \(\epsilon > 0 \) Then \(\exists n \) such that

\[\frac{1}{n} < \epsilon \quad \text{because the Archimedean property says there is } n \quad \text{such that} \]

\[n > \frac{1}{\epsilon}. \]

This implies \(\boxed{0 = \inf S} \)

The set has no minimum because \(0 \notin S \) as \(0 \neq \frac{1}{n} \) for any possible \(n \geq 1 \).
5. If $a > 0$ there exists $m \in \mathbb{N}$ with $m > \frac{1}{a} > 0$.

$\Rightarrow a > \frac{1}{m} > 0$ contradicting the assumptions in the exercise. $\Rightarrow a \leq 0$

6. Both are true with reversed signs but are false as stated.

(a) Pick $a = 5$, $b = -5$

(b) Pick $a = 5$, $b = 6$.

7. In 1.3 The triangle inequality $|A + B| \leq |A| + |B|$. To prove $||a| - |b|| \leq |a + b|$ means to prove

- RHS $|a| - |b| \leq |a + b|$.
- LHS $-|a + b| \leq |a| - |b|$.

\(\text{RHS} \quad |a| \leq |b| + |a+b|. \)

\[|a + b + (-b)| \leq |a| + |b| \]
\[\text{done.} \]

\(\text{LHS} \quad |b| \leq |a| + |a+b|. \)

\[|a + [- (a+b)]| \leq |a + [- (a+b)]| \]
\[\text{done.} \]

\(\text{2nd part. if we put } b \rightarrow -b \text{ we get} \)

\[|a| - |b| \leq |a + (-b)| \]
\[|a| - |b| \leq |a - b|. \]