1. Let \(y = 0 \cdot x \).
\[0 \cdot x = (0 + 0) \cdot x \text{ (zero is the neutral element for \(\cdot \))} \]
\[= 0 \cdot x + 0 \cdot x \text{ (distributivity)} \]
Then \(y = y + y \). Adding \(-y\) we have \((-y) + y = (y + y) = ((-y) + y) + y\) (associativity) implies \(0 = y\).

(f) Suppose there exist two inverses \(x' \) and \(x'' \) of \(x \) relative to \(+\). Then \(x' + x = x + x' = 0 \) and \(x'' + x = x + x'' = 0 \).
Add \(x'' \) to the first relation.
\[x'' + (x + x') = x'' + 0 = x'' \text{ (neutral element)} \]
But left hand side is equal to \((x'' + x) + x' = 0 + x' = x' \) by associativity. We have \(x' = x'' \).

(b) Because \((-x)\) is the notation for the unique element \(x' \) such that \(x' + x = x + x' = 0 \), this same relation shows that by changing roles, \(x \) must be the inverse of \((-x)\) relative to \(+\). That means \(-(-x) = x\).

(a) \(0 = 0 \cdot x = ((-1) + 1) \cdot x = (-1) \cdot x + 1 \cdot x = (-1) \cdot x + x\). This implies that \((-1) \cdot x\) satisfies the property defining the element \((-x)\). That element is unique, thus we are done.

(c) Is a consequence of (b).

(e) If \(x > y \) then we may add the number \(z = (-y) + (-x) \) on both sides and the equality is preserved. Then \(-y > -x\).

2. \(a \cdot x + b = c \)
\[(a \cdot x + b) + (-b) = c + (-b) \]
\[a \cdot x + (b + (-b)) = c + (-b) \]
\[a \cdot x + 0 = c + (-b) \]
\[a \cdot x = c + (-b) \]
If \(a \neq 0 \) then \(a^{-1} \cdot (a \cdot x) = a^{-1} \cdot (c + (-b)) \)
\[(a^{-1} \cdot a) \cdot x = a^{-1} \cdot (c + (-b)) \]
\[1 \cdot x = a^{-1} \cdot (c + (-b)) \]
\[x = a^{-1} \cdot (c + (-b)) \]
which can be written \(x = \frac{c-b}{a} \).
If \(a = 0 \) then the equation has no solution if \(b \neq c \) and has solution all real numbers if \(b = c \).

6. We want to show that \(\mathbb{Q}[\sqrt{2}] \) is a closed set for all required operations. For any \(x = p' + q' \sqrt{2} \) and \(y = p'' + q'' \sqrt{2} \) in \(\mathbb{Q}[\sqrt{2}] \), \(p', q', p'', q'' \in \mathbb{Q} \).

- \(x + y \in \mathbb{Q}[\sqrt{2}] \), i.e. there exist \(p, q \in \mathbb{Q} \) such that \(x + y = p + q \sqrt{2} \).
 \[x + y = (p' + p'') + (q' + q'' \sqrt{2}) = p + q \sqrt{2} \in \mathbb{Q}[\sqrt{2}] \because p = p' + q' \quad \text{and} \quad q = q' + q'' \quad \text{are in \(\mathbb{Q} \).} \]
\[x \in \mathbb{Q}[\sqrt{2}] \]
\[x = (-p') + (-q')\sqrt{2} \]
\[xy \in \mathbb{Q}[\sqrt{2}] \]
\[xy = (p'p'' + 2q'q'') + (p'q'' + p''q')\sqrt{2} \]
\[x^{-1} \in \mathbb{Q}[\sqrt{2}], \text{ when } x \neq 0, \]
\[x^{-1} = \frac{p'}{(p'p'')^2 + 2(q'q'')^2}\sqrt{2} \]

after rationalization, i.e. multiplication by \(p' - q'\sqrt{2} \) at both numerator and denominator.

If we have shown closure, then all eleven axioms of a commutative field are automatically satisfied because \(\mathbb{Q}[\sqrt{2}] \subseteq \mathbb{R} \).

8.

Remark. There is only one solution \(v > 0 \) to \(v^n = c, c > 0, n \in \mathbb{N}^* \).

Let \(w > 0 \) be another solution. Since
\[v^n - w^n = (v - w)(v^{n-1} + v^{n-2}w + \ldots + vw^{n-2} + w^{n-1}) \]
and the second factor is strictly positive, \(v^n = w^n = c \) implies \(v = w \), which proves uniqueness.

From now on \(v \) will be denoted by \(\sqrt[n]{c} = c^{\frac{1}{n}} \), the \(n \)-th root of \(c \).

In the exercise, \(n \) is \(y \).

To prove that \((a^{\frac{1}{n}})^n = (a^y)^{\frac{1}{n}} \) we only need to show that

"The number \(v \), the \(y \)-th root of \(a \), raised to power \(x \), equals the number \(w \), the \(y \)-th root of \(a^x \)."

If the two are equal, then we are justified to denote their common value by \(a^{\frac{x}{y}} \).

By definition, \(v > 0, v^y = a \) and \(w > 0, w^y = a^x \). Then
\[v^x = w \]
if and only if \((v^x)^y = w^y \) from the remark proved above. Notice that
\[(v^x)^y = v^{xy} = (v^y)^x = a^{xy} = w^y \]
so we are done.

It is important to note that we were allowed to manipulate the exponents because they were natural numbers and \(v^n = v \cdot v \cdot \ldots \) \(v \) times, the product of \(v \) with itself \(n \) times, \(\forall v \in \mathbb{N}^* \). What this exercise achieved, is to allow us to do the same for rational exponents as well.

9. For \(x = (p', q') \) and \(y = (p'', q'') \) we have \(x \leq y \) if either \(x < y \) or \(x = y \). In other words,

\[x \leq y \text{ equivalent to } \]

Either (1) \(p' < p'' \); or (2) \(p' = p'' \) and \(q' \leq q'' \).

We shall verify the three axioms of an ordered set.

- (i) \(x \leq y \) evident with (2) and \(q' = q'' \).
- (ii) \(x \leq y \text{ and } y \leq x \), then \(x = y \).

 Suppose \(p' < p'' \). Then \(y \leq x \) is false. Suppose \(p'' < p' \). Then \(x \leq y \) is false. Assuming both \(x \leq y \) and \(y \leq x \), the only remaining possibility is \(p' = p'' \). If \(p' = p'' \), we are in case (2) and \(x \leq y \) implies \(q' \leq q'' \); meanwhile \(y \leq x \) implies \(q'' \leq q' \). Thus \(q' = q'' \). Both coordinates are equal, we then have \(x = y \).
- (iii) \(x \leq y \text{ and } y \leq z \), then \(x \leq z \). Denote \(z = (p'''', q'''') \). First notice that if \(x \leq y \) then \(p' \leq p'' \), since the case \(p' > p'' \) contradicts both (1) and (2). Repeat this observation for \(y \leq z \) to conclude that \(p'' \leq p''' \). By transitivity of the usual order relation on the real numbers, \(p' \leq p''' \). We are not done yet. Suppose \(p' < p''' \); then \(x < z \) and we are done being in
case (1). If \(p' = p'' \), necessarily \(p' = p''' = p'''' \) and we are in case (2) for both inequalities. But then \(q' \leq q'' \leq q''' \) which implies that \(p' = p'''' \) and \(q' \leq q''' \), which is case (2).

- We can prove more: Any two \(x, y \) are comparable. Pick two pairs. The first components \(p', p'' \) are real numbers, and exactly one of \(p' < p'', p' > p'' \) or \(p' = p'' \) is true. If one of the first two is true, then we are in case (1), and \(x < y \), respectively \(x > y \). If the third case is true, then we are in (2), \(q', q'' \) are real numbers and exactly one of \(q' < q'', q' > q'' \) or \(q' = q'' \) is true, corresponding to \(x < y, x > y, x = y \), respectively. In all cases we were able to compare \(x \) with \(y \).

4[T].

This proof is identical to the case \(p = 2 \), and was done in class.

Suppose \(p = \left(\frac{m}{n} \right)^2 \), with \(m, n \in \mathbb{N}, n \neq 0 \), an irreducible fraction, i.e. there exists no prime that divides both \(m \) and \(n \). If a fraction is not irreducible, it can be simplified by the greatest common divisor of \(m \) and \(n \) and it becomes irreducible. Then \(pn^2 = m^2 \). This implies that \(p \) divides \(m^2 \). There is no way that \(p \) divides \(m^2 \) without dividing \(m \) (the factor \(p \) either is or is not in the factorization of \(m \)). We then have a number \(m_1 \in \mathbb{N} \) such that \(m = pm_1 \). Re-write the equality as \(pm^2 = p^2m_1^2 \), divide by \(p \), to obtain \(pm_1^2 = n^2 \). In new roles, the numbers \(m_1 \) and \(n \) allow us to apply the same reasoning to see that \(p \) divides \(n \) as well. This is a contradiction, since \(m \) and \(n \) have no common prime factors. The solution \(v \) of \(v^2 = p \) (that is, \(v = \sqrt{p} \)), cannot be written as the ratio of two integers, hence is not a rational number.

5[T].

- (a) \(S \) contains
 - (1) numbers of the form \(-\frac{1}{n}, n \geq 1 \) odd and
 - (2) numbers numbers of the form \(-\frac{1}{n} + 2n^2, n \geq 2, n \) even.

 Since \(2n^2 - \frac{1}{n} \geq n \), the set does not have an upper bound, and the supremum is not a real number. We can say this by writing \(\sup S = +\infty \).

 Since \(2n^2 - \frac{1}{n} \geq n \geq 2 \) and the odd number sequence is increasing in \(n \), the infimum is reached for the odd number \(n = 1 \) and so \(\inf S = -1 \).

- (b) \(S = (-3, 3) \). \(\inf S = -3, \sup S = +3, \) max and min do not exist.

- (c) \(S = [-\sqrt{7}, \sqrt{7}] \). \(\inf S = -\sqrt{7} = \min S, \sup S = +\sqrt{7} = \max S \).

- (d) The inequality is equivalent to \(-5 < 2x + 1 < 5 \) so \(S = (-3, 2) \). \(\inf S = -3, \sup S = +2, \) max and min do not exist.

- (e) \(S = (-1, 1) \). \(\inf S = -1, \sup S = +1, \) max and min do not exist.

- (f) \(S = [-\sqrt{7}, \sqrt{7}] \cap \mathbb{Q} \). \(\inf S = -\sqrt{7}, \sup S = +\sqrt{7}, \) max and min do not exist.

7[T].
(a) Let \(x \in S \) (it exists since \(S \) is not empty). Then \(\sup S \) is an upper bound of \(S \), i.e. \(x \leq \sup S \). Similarly, \(\inf S \) is a lower bound of \(S \), i.e. \(\inf S \leq x \). Then \(\inf S \leq x \leq \sup S \).

Conditions for equality. If \(\inf S = \sup S = s \), then for any \(x \in S \) we must have \(s \leq x \leq s \), implying \(x = s \). The only case when this can happen is when \(S = \{ s \} \), \(s \in \mathbb{R} \), i.e. \(S \) has exactly one element.

10[T].
(a) Pick any element of \(x \in S + T \). That means, there exist \(s \in S \) and \(t \in T \) such that \(x = s + t \). Since \(s \leq \sup S \) and \(t \leq \sup T \), we immediately have \(x = s + t \leq \sup S + \sup T \). We have shown that \(\sup S + \sup T \) is an upper bound of \(S + T \).

To show that it is the supremum (least upper bound), we pick \(\epsilon > 0 \). We want to show that there exists \(x_0 \in S + T \) such that \(x_0 > \sup S + \sup T - \epsilon \). But we know that \(\sup S \) has the property that for an error we deliberately choose equal to \(\epsilon/2 \), there exists \(s_0 \in S \) such that \(s_0 > \sup S - \epsilon/2 \). Similarly, there exists \(t_0 \in T \) such that \(t_0 > \sup T - \epsilon/2 \). It follows that for the choice \(x_0 = s_0 + t_0 \) we have \(x_0 > \sup S + \sup T - \epsilon \) and we are done.

The proof for \(\inf \) is the same.

11[T].
We can do problem 11 directly, but we shall prove a useful result:
\[\sup(-S) = -\inf S \]
for any \(S \) bounded above and below. Here \(-S = \{ -s \mid s \in S \} \).

Read the remarks at the end to see that the statement is true for any \(S \subseteq \mathbb{R} \) with the appropriate conventions on \(\pm \infty \).

We first prove that \(-\inf S \) is an upper bound of \(-S \). Since \(\inf S \leq s, \forall s \in S \), we have \(-s \leq -\inf S \).

We want to show that if \(M \) is an upper bound of \(-S \), then \(M \geq -\inf S \). If we know that \(-s \leq M, \forall s \in S \), then \(s \geq -M \) and then \(-M \) is a lower bound of \(S \). This implies that \(-M \leq \inf S \), or equivalently, \(M \geq -\inf S \).

The rest of problem 11 is an application of problem 10.

Remark on part (b) of 10, 11.
A set \(S \) is said bounded when it is bounded both above and below.

When a set is either unbounded below or unbounded above, we say it is unbounded.

When a set \(S \) does not have an upper bound, we say it is unbounded above, and write \(\sup S = +\infty \).

When a set \(S \) does not have a lower bound, we say it is unbounded below, and write \(\inf S = -\infty \).

All relations in problems 10, 11 are true with the obvious modifications of the calculus with \(\pm \infty \).