1.5 - 16
4 Lose, 1 Win chips

\[P(\text{the first player wins}) = P(\text{the white chip is drawn on an odd draw}) \]

\[= \sum_{x=1, 2, \ldots, \text{odd}} f(x) \]

\[f(x) = \frac{1}{5} \quad \forall \text{ } x = 1, 2, 3, 4, 5 \]

there are many ways to see that. Directly, it is

\[f(x) = P(\text{ } A \cap B) = P(\text{A | B}) P(\text{B}) \]

\[A = \{ \text{the } x^{th} \text{ chip is } W \} \]

\[B = \{ \text{there are exactly zero } W \text{ among the first } x-1 \text{ draws} \} \]

\[f(x) = \frac{1}{5-x+1} \cdot \frac{1}{\binom{5}{x-1}} = \frac{1}{5} \text{ (after the algebra)} \]

So \[P(\text{1st player wins}) = f(1) + f(3) + f(5) = \frac{3}{5} \]
Problem 1.5-16 continued

with replacement \(x = 1, 2, 3, \ldots \) any number is possible

\[
P(A \cap B) = P(A \mid B) \cdot P(B)
\]

\[
\frac{1}{5} \cdot P\left(\text{there are exactly zero } W \text{ among the first } x-1 \text{ draws} \right)
\]

\[
\left(\begin{array}{c} x-1 \\ 0 \end{array} \right) \left(\frac{1}{5} \right)^0 \left(\frac{4}{5} \right)^{x-1}
\]

\[
f(x) = \frac{1}{5} \cdot \left(\frac{4}{5} \right)^{x-1}
\]

denote \(p = \frac{1}{5} \).

\[
f(1) + f(3) + f(5) + \ldots
\]

\[
= \frac{1}{5} \left[\left(\frac{4}{5} \right)^{1-1} + \left(\frac{4}{5} \right)^{3-1} + \left(\frac{4}{5} \right)^{5-1} + \left(\frac{4}{5} \right)^{7-1} + \ldots \right]
\]

\[
= p \left[1 + (1-p)^2 + (1-p)^2 \cdot 2 + (1-p)^2 \cdot 3 + \ldots \right]
\]

\[
= p \left[\frac{1}{1-(1-p)^2} \right] = \frac{p}{(1-1+p)(1+1-p)} = \frac{1}{2-p} = \frac{5}{9}
\]

We used \(1 + z + z^2 + \ldots = \frac{1}{1-z} \) when \(|z| < 1 \)