An covariant derivative operator ∇ which is symmetric:

\[[X,Y] = \nabla_X Y - \nabla_Y X \]

obeys metric product rule (it is compatible):

\[X(y,z) = \langle \xi, Y \rangle + \langle Y, \xi \rangle \]

In coord chart (U, ξ) X^i

$X, Y \in \mathfrak{X}(M)$ on $\xi(U)$

\[\nabla_X Y = \left[X(Y^k) + \Gamma_{ij}^{k} X^i Y^j \right] \partial_k \]

\[\Gamma_{ij}^{k} = \frac{1}{2} g^{kl} \left[\partial_i g_{lj} + \partial_j g_{li} - \partial_l g_{ij} \right] \]

$\nabla_X Y \big|_p T_P M$ depends only on X_p

$X, Y \in \mathfrak{X}(M)$

\[\nabla_N Y \in T_P M, \quad N = \sum N^i \frac{\partial}{\partial x^i} \big|_p \]

\[\nabla_N Y = \left[N(Y^k) + \Gamma_{ij}^{k} N^i Y^j (p) \right] \partial_k \big|_p \]

ex. T^3, standard metric, standard connection D

ex. $M^2 \subset T^3$ surfaces in T^3

\[\langle \cdot, \cdot \rangle \text{ induced metric} \]

Induced connection in M^2: $X, Y \in \mathfrak{X}(M^2)$

\[\nabla_X Y = \text{tan}(D_X Y) \]
OR
\[\nabla_x y = \tan(\mathcal{D}_x \tilde{y}) \]
where \(\tilde{x}, \tilde{y} \in \mathcal{X}(\mathbb{R}^n) \) are extensions of \(x, y \in \mathcal{X}(M) \) to \(\mathbb{R}^n \)
\[\tilde{x}|_m = x, \quad \tilde{y}|_m = y \]
\(\nabla_x y|_p \in T_p M \)
\[\nabla_x y|_p = \tan(\mathcal{D}_x \tilde{y}|_p) \]

Proposition: Given \(M^2 \subset \mathbb{R}^3 \) the induced connection \(\nabla \) on \(M^2 \) is symmetric & compatible w/ the induced metric
1. \[[x, y] = \nabla_x y - \nabla_y x \]
2. \[x \langle y, z \rangle = \ldots \]
This is the Levi-Civita connection

\(*\) Exercise: Prove this
Fact needed to prove this: let \(\tilde{x}, \tilde{y} \in \mathcal{X}(\mathbb{R}^n) \) be extensions of \(x, y \in \mathcal{X}(\mathbb{R}^n) \). Then, \([\tilde{x}, \tilde{y}]|_m = [x, y] \)
(This fact isn't hard to show but we will just trust it is true)

This ends Chapter 3
Chapter 4: Parallelism & Geodesics

\(\sigma' \) = velocity vector field

Def: Let \(\sigma : (a,b) \to M \), \(t \to \sigma(t) \) be a smooth curve in \(M \). A vector field \(X \) along \(\sigma \) is a function which assigns to each \(t \in (a,b) \) a vector \(X(t) \in T_{\sigma(t)}M \)

\[X = X(t) \]
\[t \to \sigma(t) \]

Coordinate Expression

\[\sigma^{-1}(\mathbb{R}^n) \]

\[\sigma^{-1}(\mathbb{R}^n) \to \mathbb{R} \]

\[(t_0, t) \to \mathbb{R} \]

\(t_0 \in (a,b), \sigma(t_0) \in M \)

\((U, \phi), X^i \) be a coordinate chart about \(\sigma(t_0) \)

\(\sigma^{-1}(\mathbb{R}^n) \)

Let \(X = X(t) \) v.f. along \(\sigma \)

For each \(t \in \sigma^{-1}(\mathbb{R}^n) \)

\[X(t) \in T_{\sigma(t)}M \]
\[X(t) = \sum_{i=1}^{n} X^i(t) \frac{\partial}{\partial x^i} |_{\sigma(t)} \]

\[X^i = X^i(t) \] components of \(X \) wrt \((\mathbb{R}, U)\)

Def (Smoothness Criteria): Let \(X = X(t) \) be a vf along a curve \(\sigma: (a, b) \to M \). \(X = X(t) \) is smooth provided for each \(t \in (a, b) \) there is a coord chart \((U, \varphi)\) about \(\sigma(t) \in M \) s.t.

the components \(X^i = X^i(t) \) of \(X \) wrt \((\mathbb{R}, U)\) are smooth.

Remark: As usual, this definition of smoothness does not depend on the particular choice of coord chart.

Notation: \(X(\sigma) \) = collection of smooth \(\text{vf} \) in \(M \) along \(\sigma \).

Ex. 1. \(\sigma: (a, b) \to M, \ t \to \sigma(t) \)

Velocity vf along \(\sigma \):

\[t \to \sigma'(t) \]

velocity vectors act on things

\[\sigma'(t) : C^\infty(\sigma(t)) \to \mathbb{R} \]

\[\sigma'(t)(f) = \frac{df}{dt} \bigg|_{\sigma(t)} \]

In coord chart, \(X^i \)

\[\sigma(t) = (X^1(t), X^2(t), \ldots, X^n(t)) \]

\[\hat{\sigma} : x^i = x^i(t) \]

\[\vdots \]

\[x^n = x^n(t) \]

\[\sigma'(t) = \sum_{i=1}^{n} \frac{dx^i(t)}{dt} \frac{\partial}{\partial x^i} |_{\sigma(t)} \]
ex. 2. $X \in T(M)$, $\sigma : (a,b) \to M$

$X|_{\sigma} = X_{\sigma(t)}$

$X_\sigma(t) \in T_{\sigma(t)} M$

$X_\sigma(t) = X_{\sigma(t)}$

In coord chart (U, τ), X^i

on $\tau(U)$, $X = \sum_{i=1}^n X^i \frac{\partial}{\partial x^i}$, $X \in C^\infty(\tau(U))$

V along σ

$t \to X_\sigma(t) = X_{\sigma(t)}$

$X_\sigma(t) = \sum_{i=1}^n X^i(\sigma(t)) \frac{\partial}{\partial x^i}|_{\sigma(t)}$

$X_\sigma(t) = \sum_{i=1}^n X^i \circ \sigma(t) \frac{\partial}{\partial x^i}|_{\sigma(t)}$

along σ_1, $X_\sigma = \sum_{i=1}^n X^i \circ \sigma \frac{\partial}{\partial x^i}|_{\sigma(t)}$

Covariant Differentiation of V along a curve

Consider \mathbb{R}^n w/ standard metric $\langle \cdot, \cdot \rangle$ & standard connection ∇.

Given: $\sigma : (a,b) \to \mathbb{R}^n$

$X = X(t)$ smooth V along σ

x^1, x^2, \ldots, x^n Cartesian coords provide us w/ a canonical way of representing $X = X(t)$

\[X(t) = \sum_{i=1}^n X^i(t) \frac{\partial}{\partial x^i}|_{\sigma(t)} \]
\[X^i = X^i(t), \quad X^i \in C^\infty((a,b)) \quad \forall x \]

\[
\frac{dX}{dt}(t) = \sum_{i=1}^{n} \frac{\partial X^i}{\partial t}(t) \frac{2}{\partial x^i} \bigg|_{t(\sigma)}
\]

\[
\frac{dX}{dt} = \sum_{i=1}^{n} \frac{dX}{dt} \frac{2}{\partial x^i} \bigg|_{t(\sigma)}
\]

This differentiation satisfies certain properties:

1) Linearity over reals
\[
\frac{d}{dt}(\alpha X + \beta Y) = \alpha \frac{dX}{dt} + \beta \frac{dY}{dt}
\]
for \(\alpha, \beta \in \mathbb{R} \)

2) Product rule
\[
\frac{d}{dt} f X = \frac{df}{dt} X + f \frac{dX}{dt}
\]
\(f = f(t) \)

3) There is a connection between \(\frac{d}{dt} \) and \(D \)
\[
X \in \mathcal{X}(\mathbb{R}^n), \quad \sigma: (a,b) \rightarrow \mathbb{R}^n \quad t \rightarrow X_\sigma(t) \quad (X_\sigma(t) = X_{\sigma(t)})
\]
\[
\frac{d}{dt} X_\sigma(t) = D_{\sigma'(t)} X
\]

Proof of 3: \(X \in \mathcal{X}(\mathbb{R}^n) \)
\[
X = \sum_{i=1}^{n} X^i \partial_i, \quad X^i \in C^\infty(\mathbb{R}^n)
\]
\[
X_\sigma = \sum_{i=1}^{n} X^i \circ \sigma \partial_i |_{\sigma}
\]
\[
\frac{d}{dt} X_\sigma(t) = \sum_{i=1}^{n} \frac{d}{dt} X^i \circ \sigma(t) \partial_i \bigg|_{\sigma(t)}
\]

\[
\bigg| = D_{\sigma'(t)} X^i
\]

\[
\frac{d}{dt} X_\sigma(t) = \sum_{i=1}^{n} \sigma'(t)(X^i) \partial_i \bigg|_{\sigma(t)} = D_{\sigma'(t)} X
\]