Section 4.3: Quadratic Functions and Their Properties

- **Def:** A quadratic function is a function of the form \(f(x) = ax^2 + bx + c \), where \(a, b, c \) are real numbers and \(a \neq 0 \).

- The domain of a quadratic function is all real numbers. The shape of the graph of a quadratic function is called a parabola.

- Every quadratic function \(f(x) = ax^2 + bx + c \) can be written as \(f(x) = a(x - h)^2 + k \), where \(h = -\frac{b}{2a} \) and \(k = \frac{4ac - b^2}{4a} \). So every quadratic function is just like the function \(f(x) = x^2 \), but transformed.

- The graph of the function \(f(x) = x^2 \) opens up and has a lowest point. The graph of the function \(f(x) = -x^2 \) opens down and has a highest point. In general, we call the highest or lowest point of the parabola the vertex.

- **Def:** The axis of symmetry is the vertical line through the vertex, around which the graph of the function is symmetric.

- For the quadratic function \(f(x) = ax^2 + bx + c \), the vertex is always \(\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right) \right) \) and the axis of symmetry is \(x = -\frac{b}{2a} \). If \(a > 0 \) then the graph opens up and the vertex is the lowest point (minimum). If \(a < 0 \) then the graph opens down and the vertex is the highest point (maximum).

- Recall that to find the \(x \)-intercepts of a function, you set \(y = 0 \) and solve for \(x \). So trying to find the \(x \)-intercepts of the quadratic function \(f(x) = ax^2 + bx + c \) is the same as solving the equation \(ax^2 + bx + c = 0 \), which you can always solve by using the quadratic formula.

- The number of \(x \)-intercepts of a quadratic function depends on whether the graph opens up or down and it also depends on whether the vertex is above or below the \(x \)-axis.

1. If the graph of a quadratic function opens up and the vertex is below the \(x \)-axis or if the graph opens down and the vertex is above the \(x \)-axis, then there will be two \(x \)-intercepts.
2. If the vertex is touching the x-axis, then there is one x-intercept regardless of whether the graph opens up or down.

3. If the graph of a quadratic function opens up and the vertex is above the x-axis or if the graph opens down and the vertex is below the x-axis, then there will be no x-intercepts.

- The range of the quadratic function $f(x) = ax^2 + bx + c = a(x - h)^2 + k$ is:
 1. $[k, \infty)$ if $a > 0$ (i.e., if the graph opens up).
 2. $(-\infty, k]$ if $a < 0$ (i.e., if the graph opens down).

- ex. Write the equation of the quadratic function shown in the graph in the form $f(x) = ax^2 + bx + c$:
• ex. For the given quadratic function f answer the following:
 i) Does the graph of f open up or down?,
 ii) What is vertex (h, k) of f?,
 iii) What are the intercepts of f?,
 iv) What is the domain of f?,
 v) What is the range of f?,
 vi) What are the intervals of increase and decrease of f?,
 vii) What does the graph of f look like?

 a) $f(x) = x^2 - 4x$
 i)

 ii)

 iii)

 iv)

 v)

 vi)

 4
b) \(f(x) = -3x^2 + 3x - 2 \)

i)