Rational Catalan Combinatorics

Drew Armstrong et al.

University of Miami
www.math.miami.edu/~armstrong

March 18, 2012
This talk will advertise a definition.

Here is it.

Definition

Let x be a positive rational number written as $x = a/(b - a)$ for $0 < a < b$ coprime. Then we define the **Catalan number**

$$\text{Cat}(x) := \frac{1}{a + b} \binom{a + b}{a, b} = \frac{(a + b - 1)!}{a!b!}.$$

!!!

Please note the a, b-symmetry.
This talk will advertise a definition.

Here is it.

Definition

Let x be a positive rational number written as $x = a/(b - a)$ for $0 < a < b$ coprime. Then we define the Catalaon number

$$\text{Cat}(x) := \frac{1}{a + b} \binom{a + b}{a, b} = \frac{(a + b - 1)!}{a! b!}.$$

!!!

Please note the a, b-symmetry.
This talk will advertise a definition.

Here is it.

Definition

Let x be a **positive rational number** written as $x = a/(b - a)$ for $0 < a < b$ coprime. Then we define the **Catalan number**

$$Cat(x) := \frac{1}{a + b} \binom{a + b}{a, b} = \frac{(a + b - 1)!}{a! b!}.$$

!!!

Please note the a, b-symmetry.
Special cases.

When $b = 1 \mod a$...

- **Eugène Charles Catalan (1814-1894)**

 $(a < b) = (n < n + 1)$ gives the **good old Catalan number**

 $$\text{Cat}(n) = \text{Cat}\left(\frac{n}{1}\right) = \frac{1}{2n + 1} \binom{2n + 1}{n}.$$

- **Nicolaus Fuss (1755-1826)**

 $(a < b) = (n < kn + 1)$ gives the **Fuss-Catalan number**

 $$\text{Cat}\left(\frac{n}{(kn + 1) - n}\right) = \frac{1}{(k + 1)n + 1} \binom{(k + 1)n + 1}{n}.$$
Special cases.

When $b = 1 \mod a$...

- **Eugène Charles Catalan (1814-1894)**

 $(a < b) = (n < n + 1)$ gives the **good old Catalan number**

 \[
 \text{Cat}(n) = \text{Cat} \left(\frac{n}{1} \right) = \frac{1}{2n+1} \binom{2n+1}{n}.
 \]

- **Nicolaus Fuss (1755-1826)**

 $(a < b) = (n < kn + 1)$ gives the **Fuss-Catalan number**

 \[
 \text{Cat} \left(\frac{n}{(kn+1) - n} \right) = \frac{1}{(k+1)n+1} \binom{(k+1)n+1}{n}.
 \]
Special cases.

When $b = 1 \mod a$...

- **Eugène Charles Catalan (1814-1894)**

 $(a < b) = (n < n + 1)$ gives the **good old Catalan number**

 $$\text{Cat}(n) = \text{Cat} \left(\frac{n}{1} \right) = \frac{1}{2n + 1} \binom{2n + 1}{n}.$$

- **Nicolaus Fuss (1755-1826)**

 $(a < b) = (n < kn + 1)$ gives the **Fuss-Catalan number**

 $$\text{Cat} \left(\frac{n}{(kn + 1) - n} \right) = \frac{1}{(k + 1)n + 1} \binom{(k + 1)n + 1}{n}.$$
Euclidean Algorithm & Symmetry.

Definition

Again let $x = a/(b - a)$ for $0 < a < b$ coprime. Then we define the derived Catalan number

$$\text{Cat}'(x) := \frac{1}{b} \binom{b}{a} = \begin{cases} \text{Cat}(1/(x - 1)) & \text{if } x > 1 \\ \text{Cat}(x/(1 - x)) & \text{if } x < 1 \end{cases}$$

This is a “categorification” of the Euclidean algorithm.

Remark

If we define $\text{Cat} : \mathbb{Q} \setminus [-1, 0] \rightarrow \mathbb{N}$ by $\text{Cat}(-x - 1) := \text{Cat}(x)$ then the formula is simpler:

$$\text{Cat}'(x) = \text{Cat}(1/(x - 1)) = \text{Cat}(x/(1 - x)).$$
Euclidean Algorithm & Symmetry.

Definition

Again let $x = a/(b-a)$ for $0 < a < b$ coprime. Then we define the derived Catalan number

$$\text{Cat}'(x) := \frac{1}{b} \binom{b}{a} = \begin{cases}
\text{Cat}(1/(x-1)) & \text{if } x > 1 \\
\text{Cat}(x/(1-x)) & \text{if } x < 1
\end{cases}$$

This is a “categorification” of the Euclidean algorithm.

Remark

If we define $\text{Cat} : \mathbb{Q} \setminus [-1, 0] \to \mathbb{N}$ by $\text{Cat}(-x-1) := \text{Cat}(x)$ then the formula is simpler:

$$\text{Cat}'(x) = \text{Cat}(1/(x-1)) = \text{Cat}(x/(1-x)).$$
Definition

Again let $x = a/(b - a)$ for $0 < a < b$ coprime. Then we define the derived Catalan number

$$\text{Cat}'(x) := \frac{1}{b} \left(\frac{b}{a} \right) = \begin{cases}
\text{Cat}(1/(x - 1)) & \text{if } x > 1 \\
\text{Cat}(x/(1 - x)) & \text{if } x < 1
\end{cases}$$

This is a “categorification” of the Euclidean algorithm.

Remark

If we define $\text{Cat} : \mathbb{Q} \setminus [-1, 0] \to \mathbb{N}$ by $\text{Cat}(-x - 1) := \text{Cat}(x)$ then the formula is simpler:

$$\text{Cat}'(x) = \text{Cat}(1/(x - 1)) = \text{Cat}(x/(1 - x)).$$
Problem

Describe a recurrence for the Cat function, perhaps in terms of the Calkin-Wilf sequence

\[
\begin{align*}
\frac{1}{1} &\leftrightarrow \frac{1}{2} \leftrightarrow \frac{2}{1} \leftrightarrow \frac{1}{3} \leftrightarrow \frac{3}{2} \leftrightarrow \frac{2}{3} \leftrightarrow \frac{3}{1} \leftrightarrow \frac{1}{4} \leftrightarrow \frac{4}{3} \leftrightarrow \cdots
\end{align*}
\]

which is defined by

\[
x \mapsto \frac{1}{\lfloor x \rfloor + 1 - \{x\}}.
\]

See Aigner and Ziegler: “Proofs from THE BOOK”, Chapter 17.
What?

Well, that was fun. But *perhaps untethered to reality*...
Motivation 1: Cores

Definition

- An integer partition $\lambda = (\lambda_1 \geq \lambda_2 \geq \cdots) \vdash n$ is called p-core if it has no cell with hook length p.
- Say $\lambda \vdash n$ is (a, b)-core if it has no cell with hook length a or b.

Example

The partition $(5, 4, 2, 1, 1) \vdash 13$ is $(5, 8)$-core.
Motivation 1: Cores

Definition

- An integer partition $\lambda = (\lambda_1 \geq \lambda_2 \geq \cdots) \vdash n$ is called p-core if it has no cell with hook length p.
- Say $\lambda \vdash n$ is (a, b)-core if it has no cell with hook length a or b.

Example

The partition $(5, 4, 2, 1, 1) \vdash 13$ is $(5, 8)$-core.
Motivation 1: Cores

Definition

- An integer partition \(\lambda = (\lambda_1 \geq \lambda_2 \geq \cdots) \vdash n \) is called \(p \)-core if it has no cell with hook length \(p \).
- Say \(\lambda \vdash n \) is \((a, b)\)-core if it has no cell with hook length \(a \) or \(b \).

Example

The partition \((5, 4, 2, 1, 1) \vdash 13 \) is \((5, 8)\)-core.

\[
\begin{array}{ccccc}
9 & 6 & 4 & 3 & 1 \\
7 & 4 & 2 & 1 \\
4 & 1 \\
2 \\
1 \\
\end{array}
\]
A few facts.

Theorem (Anderson, 2002)

The number of \((a, b)\)-cores is finite if and only if \(a, b\) are coprime, in which case the number is

\[
\text{Cat} \left(\frac{a}{b-a} \right) = \frac{1}{a+b} \binom{a+b}{a, b}.
\]

Theorem (Olsson-Stanton, 2005, Vandehey, 2008)

For \(a, b\) coprime \(\exists\) unique largest \((a, b)\)-core of size \(\frac{(a^2-1)(b^2-1)}{24}\), which contains all others as subdiagrams.

Problem

Study Young’s lattice restricted to \((a, b)\)-cores.
A few facts.

Theorem (Anderson, 2002)

The number of \((a, b)\)-cores is finite if and only if \(a, b\) are coprime, in which case the number is

\[
\text{Cat} \left(\frac{a}{b - a} \right) = \frac{1}{a + b} \left(\begin{array}{c} a + b \\ a, b \end{array} \right).
\]

Theorem (Olsson-Stanton, 2005, Vandehey, 2008)

For \(a, b\) coprime \(\exists\) **unique largest** \((a, b)\)-core of size \(\frac{(a^2 - 1)(b^2 - 1)}{24}\), which contains all others as subdiagrams.

Problem

Study Young’s lattice restricted to \((a, b)\)-cores.
A few facts.

Theorem (Anderson, 2002)

The number of \((a, b)\)-cores is finite if and only if \(a, b\) are coprime, in which case the number is

\[
\text{Cat} \left(\frac{a}{b-a} \right) = \frac{1}{a+b} \binom{a+b}{a, b}.
\]

Theorem (Olsson-Stanton, 2005, Vandeheyb, 2008)

For \(a, b\) coprime \(\exists\ unique\ largest\ \(a, b\)-core\ of \(size\ \frac{(a^2-1)(b^2-1)}{24}\), which contains all others as subdiagrams.

Problem

Study Young’s lattice restricted to \((a, b)\)-cores.
A few facts.

Theorem (Anderson, 2002)

The number of \((a, b)\)-cores is finite if and only if \(a, b\) are coprime, in which case the number is

\[
\text{Cat}\left(\frac{a}{b-a}\right) = \frac{1}{a+b}\binom{a+b}{a, b}.
\]

Theorem (Olsson-Stanton, 2005, Vandehey, 2008)

For \(a, b\) coprime \(\exists\) unique largest \((a, b)\)-core of size \(\frac{(a^2-1)(b^2-1)}{24}\), which contains all others as subdiagrams.

Problem

Study Young’s lattice restricted to \((a, b)\)-cores.
A few facts.

Example (The poset of (3, 4)-cores.)
A few facts.

Theorem (Ford-Mai-Sze, 2009)

For a, b coprime, the number of self-conjugate (a, b)-cores is

$$\left(\left\lfloor \frac{a^2}{2} \right\rfloor + \left\lfloor \frac{b^2}{2} \right\rfloor \right).$$

Note: Beautiful bijective proof! (omitted)

Observation/Problem

$$\left(\left\lfloor \frac{a}{2} \right\rfloor + \left\lfloor \frac{b}{2} \right\rfloor \right) = \frac{1}{[a + b]_q} \left\lfloor \begin{array}{c} a + b \\ a, b \end{array} \right\rfloor_q \bigg|_{q = -1}$$

Conjecture (Armstrong, 2011)

The average size of an (a, b)-core and the average size of a self-conjugate (a, b)-core are both equal to $$\frac{(a+b+1)(a-1)(b-1)}{24}.$$
A few facts.

Theorem (Ford-Mai-Sze, 2009)

For a, b coprime, the number of self-conjugate (a, b)-cores is

\[
\left\lfloor \frac{a}{2} \right\rfloor + \left\lfloor \frac{b}{2} \right\rfloor.
\]

Note: Beautiful bijective proof! (omitted)

Observation/Problem

\[
\left(\left\lfloor \frac{a}{2} \right\rfloor + \left\lfloor \frac{b}{2} \right\rfloor \right) = \frac{1}{[a + b]_q [a, b]_q} \bigg|_{q = -1}
\]

Conjecture (Armstrong, 2011)

The average size of an (a, b)-core and the average size of a self-conjugate (a, b)-core are both equal to

\[
\frac{(a+b+1)(a-1)(b-1)}{24}.
\]
A few facts.

Theorem (Ford-Mai-Sze, 2009)

For a, b coprime, the number of self-conjugate (a, b)-cores is $\left\lfloor \frac{a}{2} \right\rfloor + \left\lfloor \frac{b}{2} \right\rfloor \cdot \left\lfloor \frac{a}{2} \right\rfloor \cdot \left\lfloor \frac{b}{2} \right\rfloor$.

Note: Beautiful bijective proof! (omitted)

Observation/Problem

$$\left(\left\lfloor \frac{a}{2} \right\rfloor + \left\lfloor \frac{b}{2} \right\rfloor \right) = \frac{1}{[a + b]_q \left\lfloor a, b \right\rfloor_q} \bigg|_{q=-1}$$

Conjecture (Armstrong, 2011)

The average size of an (a, b)-core and the average size of a self-conjugate (a, b)-core are both equal to $\frac{(a+b+1)(a-1)(b-1)}{24}$.
Anderson’s beautiful proof of \(\frac{1}{a+b} \binom{a+b}{a,b} \).

Step 1

- Bijection: \((a, b)\)-cores \(\leftrightarrow\) Dyck paths in \(a \times b\) rectangle

Example (The \((5, 8)\)-core from earlier.)
Anderson’s beautiful proof of \(\frac{1}{a+b} \binom{a+b}{a,b} \).

Step 1

- **Bijection:** \((a, b)\)-cores \(\leftrightarrow\) Dyck paths in \(a \times b\) rectangle

Example (The \((5, 8)\)-core from earlier.)
Anderson’s beautiful proof of \(\frac{1}{a+b} \binom{a+b}{a,b} \).

Step 1

- **Bijection**: \((a, b)\)-cores ↔ Dyck paths in \(a \times b\) rectangle

Example (The \((5, 8)\)-core from earlier.)

\[
\begin{array}{cccc}
9 & 6 & 4 & 3 \\
7 & 4 & 2 & 1 \\
4 & 1 & & \\
2 & & & \\
1 & & & \\
\end{array}
\]

\[
\begin{array}{cccccccc}
40 & 35 & 30 & 25 & 20 & 15 & 10 & 5 & 0 \\
32 & & & & & & & & \\
24 & & & & & & & & \\
16 & & & & & & & & \\
8 & & & & & & & & \\
0 & & & & & & & & \\
\end{array}
\]
Anderson’s beautiful proof of \(\frac{1}{a+b} \binom{a+b}{a,b} \).

Step 1

- Bijection: \((a,b)\)-cores ↔ Dyck paths in \(a \times b\) rectangle

Example (The \((5,8)\)-core from earlier.)

\[
\begin{array}{cccccc}
9 & 6 & 4 & 3 & 1 \\
7 & 4 & 2 & 1 \\
4 & 1 \\
2 \\
1 \\
\end{array}
\quad \begin{array}{cccccccc}
40 & 35 & 30 & 25 & 20 & 15 & 10 & 5 & 0 \\
32 & 27 & 22 & 17 & 12 & 7 & 2 \\
24 & 19 & 14 & 9 & 4 \\
16 & 11 & 6 & 1 \\
8 & 3 \\
0 \\
\end{array}
\]
Anderson’s beautiful proof of $\frac{1}{a+b}(\binom{a+b}{a,b})$.

Step 1

- Bijection: (a,b)-cores \leftrightarrow Dyck paths in $a \times b$ rectangle

Example (The $(5,8)$-core from earlier.)

```
   9 6 4 3 1
  7 4 2 1
  4 1
  2
  1
```

```
  40 35 30 25 20 15 10 5 0
 32 27 22 17 12 7 2
 24 19 14 9 4
 16 11 6 1
  8 3
  0
```
Anderson’s beautiful proof of $\frac{1}{a+b} \binom{a+b}{a,b}$.

Step 1

- Bijection: (a, b)-cores \leftrightarrow Dyck paths in $a \times b$ rectangle

Example (The $(5, 8)$-core from earlier.)
Anderson’s beautiful proof of $\frac{1}{a+b} \binom{a+b}{a,b}$.

Step 1

- Bijection: (a, b)-cores \leftrightarrow Dyck paths in $a \times b$ rectangle

Example (NB: Conjugation is weird, but...)

```
9 6 4 3 1
7 4 2 1
4 1
2
1
```

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
 & 40 & 35 & 30 & 25 & 20 & 15 & 10 & 5 & 0 \\
\hline
32 & 27 & 22 & 17 & 12 & 7 & 2 & & & \\
24 & 19 & 14 & 9 & 4 & & & & & \\
16 & 11 & 6 & 1 & & & & & & \\
8 & 3 & & & & & & & & \\
0 & & & & & & & & & \\
\hline
\end{tabular}
```
Step 2

- **Theorem (Bizley, 1954):** \# Dyck paths is \(\frac{1}{a+b} \binom{a+b}{a,b} \).

Proof idea.

- The \(\binom{a+b}{a,b} \) lattice paths break into cyclic orbits of size \(a + b \).
- Each orbit contains a unique Dyck path.
- Coprimality of \(a, b \) is necessary.
Anderson’s beautiful proof of \(\frac{1}{a+b} \binom{a+b}{a,b} \).

Step 2

- **Theorem (Bizley, 1954):** \# Dyck paths is \(\frac{1}{a+b} \binom{a+b}{a,b} \).

Proof idea.

- The \(\binom{a+b}{a,b} \) lattice paths break into cyclic orbits of size \(a + b \).
- Each orbit contains a unique Dyck path.
- Coprimality of \(a, b \) is necessary.
Motivation 2: Parking Functions

(with Haglund, Haiman, Loehr, Warrington et al.)

Definition

Again let \(x = a/(b - a) \) with \(0 < a < b \) coprime.

- An \(x \)-parking function is a “decorated” Dyck path in the \(a \times b \) rectangle. (Decorate the vertical runs with the labels \(\{1, 2, \ldots, a\} \).

- Classical form: \((z_1, z_2, \ldots, z_a)\) where label \(i \) occurs in column \(z_i \).

- Symmetric group \(S_a \) acts on classical forms by permutation. Let \(PF(x) \) denote the corresponding \(S_a \)-module.
Definition

Again let $x = a/(b - a)$ with $0 < a < b$ coprime.

- An x-parking function is a “decorated” Dyck path in the $a \times b$ rectangle. (Decorate the vertical runs with the labels $\{1, 2, \ldots, a\}$.)

- Classical form: (z_1, z_2, \ldots, z_a) where label i occurs in column z_i.

- Symmetric group S_a acts on classical forms by permutation. Let $PF(x)$ denote the corresponding S_a-module.
Definition

Again let $x = a/(b - a)$ with $0 < a < b$ coprime.

- An x-parking function is a “decorated” Dyck path in the $a \times b$ rectangle. (Decorate the vertical runs with the labels $\{1, 2, \ldots, a\}$.)

- Classical form: (z_1, z_2, \ldots, z_a) where label i occurs in column z_i.

- Symmetric group S_a acts on classical forms by permutation. Let $PF(x)$ denote the corresponding S_a-module.
Motivation 2: Parking Functions
(with Haglund, Haiman, Loehr, Warrington et al.)

Definition

Again let \(x = \frac{a}{b - a} \) with \(0 < a < b \) coprime.

- An \(x \)-parking function is a “decorated” Dyck path in the \(a \times b \) rectangle. (Decorate the vertical runs with the labels \(\{1, 2, \ldots, a\} \).)

- Classical form: \((z_1, z_2, \ldots, z_a)\) where label \(i \) occurs in column \(z_i \).

- Symmetric group \(\mathfrak{S}_a \) acts on classical forms by permutation. Let \(\text{PF}(x) \) denote the corresponding \(\mathfrak{S}_a \)-module.
Motivation 2: Parking Functions
(with Haglund, Haiman, Loehr, Warrington et al.)

Definition

Again let $x = a/(b - a)$ with $0 < a < b$ coprime.

- An x-parking function is a “decorated” Dyck path in the $a \times b$ rectangle. (Decorate the vertical runs with the labels \{1, 2, \ldots, a\}.)

- Classical form: (z_1, z_2, \ldots, z_a) where label i occurs in column z_i.

- Symmetric group S_a acts on classical forms by permutation. Let $\text{PF}(x)$ denote the corresponding S_a-module.
Examples for \(x = \frac{5}{(8 - 5)}. \) (\(\text{Cat}(x) = 99. \))

- Here’s the 5/3-parking function with classical form \((3, 1, 4, 4, 1)\).

- Here’s the 5/3-parking function with classical form \((3, 1, 1, 4, 4)\).
A few facts.

Theorems

- # x-parking functions is b^{a-1}.

- # x-Dyck paths with r_i vertical runs of length i is \(\frac{1}{b} \binom{b}{r_0, r_1, \ldots, r_a} \):\[
PF(x) = \sum_{r \vdash a} \frac{1}{b} \binom{b}{r_0, r_1, \ldots, r_a} h_r,
\]
 where the sum is over $r = 0^{r_0}1^{r_1} \cdots a^{r_a} \vdash a$ with $\sum_i r_i = b$.

- # x-parking functions fixed by $\sigma \in S_a$ is $b^\#\text{cycles}(\sigma)-1$: \[
PF(x) = \sum_{r \vdash a} b^{\ell(r)-1} \frac{p_r}{z_r}
\]
A few facts.

Theorems

- # x-parking functions is b^{a-1}.

- # x-Dyck paths with r_i vertical runs of length i is $\frac{1}{b} \binom{b}{r_0, r_1, \ldots, r_a}$:

 $$
 \text{PF}(x) = \sum_{r \vdash a} \frac{1}{b} \binom{b}{r_0, r_1, \ldots, r_a} h_r,
 $$

 where the sum is over $r = 0^{r_0}1^{r_1} \cdots a^{r_a} \vdash a$ with $\sum_i r_i = b$.

- # x-parking functions fixed by $\sigma \in S_a$ is $b^\#\text{cycles}(\sigma) - 1$:

 $$
 \text{PF}(x) = \sum_{r \vdash a} b^\ell(r) - 1 \frac{p_r}{z_r}
 $$
A few facts.

Theorems

- **# x-parking functions** is b^{a-1}.

- **# x-Dyck paths with r_i vertical runs of length i** is $\frac{1}{b} \binom{b}{r_0, r_1, \ldots, r_a}$:

 $$\text{PF}(x) = \sum_{r \vdash a} \frac{1}{b} \binom{b}{r_0, r_1, \ldots, r_a} h_r,$$

 where the sum is over $r = 0^{r_0} 1^{r_1} \cdots a^{r_a} \vdash a$ with $\sum_i r_i = b$.

- **# x-parking functions fixed by $\sigma \in S_a$** is $b^{\#\text{cycles}(\sigma) - 1}$:

 $$\text{PF}(x) = \sum_{r \vdash a} b^{\ell(r) - 1} \frac{p_r}{z_r}.$$
A few facts.

Theorems

- The number of \(x \)-parking functions is \(b^{a-1} \).

- The number of \(x \)-Dyck paths with \(r_i \) vertical runs of length \(i \) is \(\frac{1}{b} \binom{b}{r_0, r_1, \ldots, r_a} \):

\[
PF(x) = \sum_{r \vdash a} \frac{1}{b} \binom{b}{r_0, r_1, \ldots, r_a} h_r,
\]

where the sum is over \(r = 0^{r_0}1^{r_1} \cdots a^{r_a} \vdash a \) with \(\sum_i r_i = b \).

- The number of \(x \)-parking functions fixed by \(\sigma \in \mathfrak{S}_a \) is \(b^{\#\text{cycles}(\sigma)-1} \):

\[
PF(x) = \sum_{r \vdash a} b^{\ell(r)-1} \frac{p_r}{Z_r}
\]
Define a quasisymmetric function with coefficients in $\mathbb{N}[q, t]$ by

$$\text{PF}_{q,t}(x) := \sum_{P} q^{\text{qstat}(P)} t^{\text{tstat}(P)} F_{\text{iDes}(P)}.$$

- Sum over x-parking functions P.

- F is fundamental (Gessel) quasisymmetric function. — natural refinement of Schur functions

- Must define qstat, tstat, iDes for x-parking function P.
Define a quasisymmetric function with coefficients in $\mathbb{N}[q, t]$ by

$$PF_{q,t}(x) := \sum_P q^{\text{qstat}(P)} t^{\text{tstat}(P)} F_{\text{iDes}(P)}.$$
Define a quasisymmetric function with coefficients in \(\mathbb{N}[q, t] \) by

\[
PF_{q,t}(x) := \sum_{P} q^{qstat(P)} t^{tstat(P)} F_{\text{iDes}(P)}.
\]

- Sum over \(x \)-parking functions \(P \).

- \(F \) is fundamental (Gessel) quasisymmetric function.
 — natural refinement of Schur functions

- Must define \(qstat, tstat, \text{iDes} \) for \(x \)-parking function \(P \).
Define a quasisymmetric function with coefficients in $\mathbb{N}[q, t]$ by

$$PF_{q,t}(x) := \sum_P q^{q\text{stat}(P)} t^{t\text{stat}(P)} F_{\text{iDes}(P)}.$$

- Sum over x-parking functions P.
- F is fundamental (Gessel) quasisymmetric function.
 — natural refinement of Schur functions
- Must define $q\text{stat}$, $t\text{stat}$, iDes for x-parking function P.
Define a quasisymmetric function with coefficients in $\mathbb{N}[q, t]$ by

$$PF_{q,t}(x) := \sum_P q^{q_{\text{stat}}(P)} t^{t_{\text{stat}}(P)} F_{i\text{Des}(P)}.$$

- Sum over x-parking functions P.

- F is fundamental (Gessel) quasisymmetric function.
 — *natural refinement of Schur functions*

- Must define $q_{\text{stat}}, t_{\text{stat}}, i\text{Des}$ for x-parking function P.

Idea
qstat is easy.

Definition

- Let qstat := area := \# boxes between the path and diagonal.
- Note: Maximum value of area is \((a - 1)(b - 1)/2\). (Frobenius) — see Beck and Robins, Chapter 1

Example

- This 5/3-parking function has area = 6.
qstat is easy.

Definition

- Let \(qstat := area := \# \) boxes between the path and diagonal.
- Note: Maximum value of area is \((a - 1)(b - 1)/2 \). (Frobenius)
 — see Beck and Robins, Chapter 1

Example

- This 5/3-parking function has area = 6.
iDes is reasonable.

Definition

- Read labels by increasing “height” to get permutation \(\sigma \in S_a \).
- \(i\text{Des} := \) the descent set of \(\sigma^{-1} \).

Example

- This is a secret message.

 \[i\text{Des} = \{1,4\} \]
iDes is reasonable.

Definition

- Read labels by increasing “height” to get permutation $\sigma \in \mathcal{S}_a$.
- $\text{iDes} :=$ the descent set of σ^{-1}.

Example

- This is a secret message.
- $\text{iDes} = \{1, 4\}$.
iDes is reasonable.

Definition
- Read labels by increasing “height” to get permutation $\sigma \in \mathfrak{S}_a$.
- $\text{iDes} :=$ the descent set of σ^{-1}.

Example
- Remember the “height”?

![Graph showing the descent set of a permutation]

$\text{iDes} = \{1, 4\}$.
iDes is reasonable.

Definition

- Read labels by increasing “height” to get permutation $\sigma \in \mathfrak{S}_a$.
- $i\text{Des} :=$ the descent set of σ^{-1}.

Example

- Look at the heights of the vertical step boxes.

```
40 35 30 25 20 15 10 5 0
32       12
24       4
16      1
 8      3
 0     5
```

- $i\text{Des} = \{1, 4\}$.
iDes is reasonable.

Definition

- Read labels by increasing “height” to get permutation $\sigma \in S_a$.
- $\text{iDes} :=$ the descent set of σ^{-1}.

Example

- Remember the labels we had before.

![Diagram showing descent set]

- $\text{iDes} = \{1, 4\}$.
iDes is reasonable.

Definition

- Read labels by increasing “height” to get permutation $\sigma \in S_a$.
- $iDes :=$ the descent set of σ^{-1}.

Example

- Read them by increasing height to get $\sigma = 2\overline{1534} \in S_5$.
- $iDes = \{1, 4\}$.
iDes is reasonable.

Definition

- Read labels by increasing “height” to get permutation $\sigma \in S_a$.
- $iDes :=$ the descent set of σ^{-1}.

Example

- Read them by increasing height to get $\sigma = 2\bar{1}53\bar{4} \in S_5$.

 ![Diagram](image)

 - $iDes = \{1, 4\}$.
tstat is bizarre (as usual).

Definition

- “Blow up” the x-parking function.
- Compute “dinv” of the blowup.

Example

- What?
tstat is bizarre (as usual).

Definition

- “Blow up” the x-parking function.
- Compute “dinv” of the blowup.

Example

- What?
tstat is bizarre (as usual).

Definition

- "Blow up" the x-parking function.
- Compute "dinv" of the blowup.

Example

- Remember our friend the 5/3-parking function.
tstat is bizarre (as usual).

Definition

- “Blow up” the x-parking function.
- Compute “dinv” of the blowup.

Example

- Since $2 \cdot 8 - 3 \cdot 5 = 1$ we “blow up” by 2 horiz. and 3 vert....
tstat is bizarre (as usual).

Example

- To get this!
tstat is bizarre (as usual).

Example

- To get this! Now compute “dinv”. (Computation omitted.)
Some things.

Things

- \(PF_{1,1}(x) = PF(x) \).
- \(PF_{q,t}(x) \) is symmetric and Schur-positive with coeffs \(\in \mathbb{N}[q, t] \).
 — via LLT polynomials
- Probably \(PF_{q,t}(x) = PF_{t,q}(x) \).
 — this will be impossible to prove (see Loehr’s Maxim)
- The coefficient of \(sgn \) is some \(Cat_{q,t}(x) \).
- Probably \(q^{(a-1)(b-1)/2} Cat_{q,\frac{1}{q}}(x) = \frac{1}{[a+b]_q} \left[a+b \right]_q \).

Problems

- Does \(PF_{q,t}(x) \) occur “in nature”?
- How are \(PF_{q,t}(x) \) and \(PF_{q,t}(-x - 1) \) related?
Some things.

Things

- $\text{PF}_{1,1}(x) = \text{PF}(x)$.
- $\text{PF}_{q,t}(x)$ is symmetric and Schur-positive with coeffs $\in \mathbb{N}[q, t]$.
 — via LLT polynomials
- Probably $\text{PF}_{q,t}(x) = \text{PF}_{t,q}(x)$.
 — this will be impossible to prove (see Loehr’s Maxim)
- The coefficient of sgn is some $\text{Cat}_{q,t}(x)$.
- Probably $q^{(a-1)(b-1)/2} \text{Cat}_{q,\frac{1}{q}}(x) = \frac{1}{[a+b]_q} [a,b]_q$.

Problems

- Does $\text{PF}_{q,t}(x)$ occur “in nature”?
- How are $\text{PF}_{q,t}(x)$ and $\text{PF}_{q,t}(-x-1)$ related?
Some things.

Things

- \(\text{PF}_{1,1}(x) = \text{PF}(x) \).
- \(\text{PF}_{q,t}(x) \) is symmetric and Schur-positive with \(\text{coeffs} \in \mathbb{N}[q, t] \).
 — via LLT polynomials
- Probably \(\text{PF}_{q,t}(x) = \text{PF}_{t,q}(x) \).
 — this will be impossible to prove (see Loehr’s Maxim)
- The coefficient of \(\text{sgn} \) is some \(\text{Cat}_{q,t}(x) \).
- Probably \(q^{(a-1)(b-1)/2} \text{Cat}_{q,\frac{1}{q}}(x) = \frac{1}{[a+b]_q} [\frac{a+b}{q}]. \)

Problems

- Does \(\text{PF}_{q,t}(x) \) occur “in nature”?
- How are \(\text{PF}_{q,t}(x) \) and \(\text{PF}_{q,t}(-x - 1) \) related?
Some things.

Things

- $\text{PF}_{1,1}(x) = \text{PF}(x)$.
- $\text{PF}_{q,t}(x)$ is \textbf{symmetric and Schur-positive} with coeffs \(\in \mathbb{N}[q, t]\).
 — \textit{via LLT polynomials}
- Probably $\text{PF}_{q,t}(x) = \text{PF}_{t,q}(x)$.
 — \textit{this will be impossible to prove (see Loehr’s Maxim)}
- The coefficient of sgn is some $\text{Cat}_{q,t}(x)$.
- Probably $q^{(a-1)(b-1)/2} \text{Cat}_{\frac{1}{q},q} x = \frac{1}{[a+b]_q} \left[\frac{a+b}{a,b}\right]_q$.

Problems

- Does $\text{PF}_{q,t}(x)$ occur “in nature”?
- How are $\text{PF}_{q,t}(x)$ and $\text{PF}_{q,t}(-x - 1)$ related?
Some things.

Things

- \(\text{PF}_{1,1}(x) = \text{PF}(x) \).
- \(\text{PF}_{q,t}(x) \) is **symmetric and Schur-positive** with coeffs \(\in \mathbb{N}[q, t] \).

 — *via LLT polynomials*
- Probably \(\text{PF}_{q,t}(x) = \text{PF}_{t,q}(x) \).

 — *this will be impossible to prove (see Loehr’s Maxim)*
- The coefficient of \(\text{sgn} \) is some \(\text{Cat}_{q,t}(x) \).
- Probably \(q^{(a-1)(b-1)/2} \text{Cat}_{q,1/q}(x) = \frac{1}{[a+b]_q} [a,b]_q \).

Problems

- Does \(\text{PF}_{q,t}(x) \) occur “in nature”?
- How are \(\text{PF}_{q,t}(x) \) and \(\text{PF}_{q,t}(-x-1) \) related?
Things

- $\text{PF}_{1,1}(x) = \text{PF}(x)$.
- $\text{PF}_{q,t}(x)$ is symmetric and Schur-positive with coeffs $\in \mathbb{N}[q, t]$.
 — via LLT polynomials
- Probably $\text{PF}_{q,t}(x) = \text{PF}_{t,q}(x)$.
 — *this will be impossible to prove* (see Loehr’s Maxim)
- The coefficient of sgn is some $\text{Cat}_{q,t}(x)$.
- Probably $q^{(a-1)(b-1)/2} \text{Cat}_{q,\frac{1}{q}}(x) = \frac{1}{[a+b]_q} [a,b]_q$.

Problems

- Does $\text{PF}_{q,t}(x)$ occur “in nature”?
- How are $\text{PF}_{q,t}(x)$ and $\text{PF}_{q,t}(-x - 1)$ related?
Some things.

Things

- $\text{PF}_{1,1}(x) = \text{PF}(x)$.
- $\text{PF}_{q,t}(x)$ is symmetric and Schur-positive with coeffs $\in \mathbb{N}[q, t]$.
 — via LLT polynomials
- Probably $\text{PF}_{q,t}(x) = \text{PF}_{t,q}(x)$.
 — this will be impossible to prove (see Loehr’s Maxim)
- The coefficient of sgn is some $\text{Cat}_{q,t}(x)$.
- Probably $q^{(a-1)(b-1)/2} \text{Cat}_{q,\frac{1}{q}}(x) = \frac{1}{[a+b]_q} \left[\begin{array}{c} a+b \\ a,b \end{array} \right]_q$.

Problems

- Does $\text{PF}_{q,t}(x)$ occur “in nature”?
- How are $\text{PF}_{q,t}(x)$ and $\text{PF}_{q,t}(-x - 1)$ related?
Motivation 3: Lie Theory

(quoting from: Cellini-Papi, Haiman, Shi, Sommers et al.)
Consider Weyl group \mathfrak{S}_a with a, b coprime.
Consider Weyl group Γ_a with a, b coprime.

- These are the weight and root lattices $\Lambda < Q$ of Γ_a.
Consider Weyl group Γ_a with a, b coprime.

Here is a **fundamental parallelepiped** for $\Lambda/b\Lambda$.
Consider Weyl group S_a with a, b coprime.

- It contains b^{a-1} elements (the “parking functions”).
Consider Weyl group \mathfrak{S}_a with a, b coprime.

- But they look better as a simplex...
Consider Weyl group S_a with a, b coprime.

...which is congruent to a nicer simplex.
Consider Weyl group \mathfrak{S}_a with a, b coprime.

- There are $\frac{1}{a+b} \binom{a+b}{a,b}$ elements of the root lattice inside.
Consider Weyl group \mathfrak{S}_a with a, b coprime.

- These are called (a, b)-cores (or x-Dyck paths).
“The same” works for all Weyl groups...

Definition

Consider a Weyl group W with Coxeter number h and let $p \in \mathbb{N}$ coprime to h. We define the **Catalan number**

$$\text{Cat}_q(W, p) := \prod_j \frac{[p + m_j]_q}{[1 + m_j]_q}$$

where $e^{2\pi i m_j / h}$ are the eigenvalues of a Coxeter element.
...but I’m out of time.