Problem 1. Logical Analysis.

(a) Let Q and R be logical statements. Use a truth table to prove that $\neg(Q \lor R)$ is logically equivalent to $\neg Q \land \neg R$. [This is called de Morgan’s law.]

(b) Let P, Q, and R be logical statements. Use a truth table to prove that $(Q \lor R) \Rightarrow P$ is logically equivalent to $(Q \Rightarrow P) \land (R \Rightarrow P)$.

(c) Apply the principles from (a) and (b) to prove that for all integers m and n we have

“mn is even” \iff “m is even or n is even”. [Hint: Let $P =$“mn is even”, $Q =$“m is even”, and $R =$“n is even”. Use part (a) for the “\Rightarrow” direction and use part (b) for the “\Leftarrow” direction.]

Here is the truth table for part (a):

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>$Q \lor R$</th>
<th>$\neg(Q \lor R)$</th>
<th>$\neg Q$</th>
<th>$\neg R$</th>
<th>$(\neg Q \land \neg R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Note that the third and sixth columns are equal. And here is the truth table for part (b):

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>$Q \lor R$</th>
<th>$(Q \lor R) \Rightarrow P$</th>
<th>$Q \Rightarrow P$</th>
<th>$R \Rightarrow P$</th>
<th>$(Q \Rightarrow P) \land (R \Rightarrow P)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Note that the fifth and eighth columns are equal. Finally, here is the proof of part (c):

Proof. Let $m, n \in \mathbb{Z}$ and consider the statements $P =$“mn is even”, $Q =$“m is even”, and $R =$“n is even”. We will prove that $P \iff (Q \lor R)$, in two separate steps.

First we will prove that $P \Rightarrow (Q \lor R)$. To do this we will rewrite the statement using the contrapositive and de Morgan’s law to get

$$P \Rightarrow (Q \lor R),$$

$$\neg(Q \lor R) \Rightarrow \neg P,$$

$$((\neg Q \land \neg R) \Rightarrow \neg P).$$

This last statement says that “m and n are both odd” \Rightarrow “mn is odd”. To prove this, assume that m and n are both odd, i.e., assume that there exist integers $k, \ell \in \mathbb{Z}$ such that $m = 2k + 1$ and $n = 2\ell + 1$. In this case we have

$$mn = (2k + 1)(2\ell + 1)$$

$$= 4k\ell + 2k + 2\ell + 1$$

$$= 2(2k\ell + k + \ell) + 1,$$
which is odd as desired.

Next we will prove that \((Q \lor R) \Rightarrow P\). By part (b) it is enough to prove the equivalent statement \((Q \Rightarrow P) \land (R \Rightarrow P)\). In other words, we have to show that “\(m\) is even” \(\Rightarrow “mn\) is even” and “\(n\) is even” \(\Rightarrow “mn\) is even”. So assume that \(m\) is even, i.e., assume that there exists an integer \(k \in \mathbb{Z}\) such that \(m = 2k\). Then we have \(mn = (2k)n = 2(kn)\), hence \(mn\) is even. Similarly, assume that \(n\) is even so there exists \(\ell \in \mathbb{Z}\) with \(n = 2\ell\). Then we have \(mn = m(2\ell) = 2(m\ell)\), hence \(mn\) is even. This proves the result.

Since we have separately shown that \(P \Rightarrow (Q \lor R)\) and \((Q \lor R) \Rightarrow P\), we conclude that \(P \Leftrightarrow (Q \lor R)\), as desired.

\[\square \]

Problem 2. Absolute Value. Given an integer \(a\) we define its absolute value as follows:

\[
|a| := \begin{cases}
 a & \text{if } a > 0 \\
 0 & \text{if } a = 0 \\
 -a & \text{if } a < 0
\end{cases}
\]

Prove that for all integers \(a\) and \(b\) we have \(|ab| = |a||b|\). [Hint: Your proof will break into at least five separate cases. You may assume without proof the properties \((-a)(-b) = ab\) and \((-a)b = a(-b) = -(ab)\); we’ll prove them later.]

Proof. Consider any integers \(a, b \in \mathbb{Z}\). We want to show that \(|ab| = |a||b|\). We will break the proof into five cases.

Case 1: If at least one of \(a\) or \(b\) is zero then we have \(ab = 0\), and hence \(|ab| = 0\). On the other hand we also know that at least one of \(|a|\) or \(|b|\) is zero, hence \(|a||b| = 0\). We conclude that \(|ab| = |a||b|\).

Case 2: If \(a > 0\) and \(b > 0\) then \(ab > 0\), so we have \(|ab| = ab\). On the other hand we have \(|a| = a\) and \(|b| = b\), hence \(|a||b| = ab\). We conclude that \(|ab| = |a||b|\).

Case 3: If \(a > 0\) and \(b < 0\) then \(ab < 0\), so we have \(|ab| = -(ab)\). On the other hand, we have \(|a| = a\) and \(|b| = -b\), hence \(|a||b| = a(-b)\). Since we have assumed that \(a(-b) = -(ab)\), this implies that \(|ab| = |a||b|\).

Case 4: If \(a < 0\) and \(b > 0\) then \(ab < 0\), so that \(|ab| = -(ab)\). On the other hand, we have \(|a| = -a\) and \(|b| = b\), so that \(|a||b| = (-a)b\). Since we have assumed that \((-a)b = -(ab)\) this implies that \(|ab| = |a||b|\).

Case 5: If \(a < 0\) and \(b < 0\) then \(ab > 0\), so that \(|ab| = ab\). On the other hand, we have \(|a| = -a\) and \(|b| = -b\), hence \(|a||b| = (-a)(-b)\). Since we have assumed that \((-a)(-b) = ab\) this implies that \(|ab| = |a||b|\).

\[\square \]

[Remark: You’ve probably used the identity \(|ab| = |a||b|\) many times, but maybe you’ve never thought about why it’s true. On HW3 you will finish the job by proving that \((-a)b = a(-b) = -(ab)\) and \((-a)(-b) = ab\) directly from the definition of the integers.]

Problem 3. Divisibility. Given integers \(m\) and \(n\) we will write “\(m|n\)” to mean that “there exists an integer \(k\) such that \(n = mk\)” and when this is the case we will say that “\(m\) divides \(n\)” or “\(n\) is divisible by \(m\)”. Now let \(a, b,\) and \(c\) be integers. Prove the following properties.

(a) If \(a|b\) and \(b|c\) then \(a|c\).

(b) If \(a|b\) and \(a|c\) then \(a|(bx + cy)\) for all integers \(x\) and \(y\).
(c) If \(a|b\) and \(b|a\) then \(a = \pm b\). [Hint: Use the fact that \(uv = 0\) implies \(u = 0\) or \(v = 0\).]

(d) If \(a|b\) and \(b\) is nonzero then \(|a| \leq |b|\). [Hint: Use the result of Problem 2.]

\textbf{Proof.} For part (a), assume that \(a|b\) and \(b|c\), i.e., assume that there exist integers \(k, \ell \in \mathbb{Z}\) such that \(b = ak\) and \(c = b\ell\). Then we have
\[
c = b\ell = (ak)\ell = a(\ell k),
\]
hence \(a|c\), as desired.

For part (b), assume that \(a|b\) and \(a|c\), i.e., assume that there exist integers \(k, \ell \in \mathbb{Z}\) such that \(b = ak\) and \(c = a\ell\). Then for any integers \(x, y \in \mathbb{Z}\) we have
\[
bx + cy = (ak)x + (a\ell)y = a(kx) + a(\ell y) = a(kx + \ell y),
\]
hence \(a|(bx + cy)\) as desired.

For part (c) assume that \(a|b\) and \(b|a\), i.e., assume that there exist integers \(k, \ell \in \mathbb{Z}\) such that \(b = ak\) and \(a = b\ell\). Then we have
\[
a = b\ell = (ak)\ell = a(\ell k),
\]
\[
a = a(\ell k) = 0 = a(\ell k) - a = a(k\ell - 1).
\]
If \(a = 0\) then we must have \(b = 0\) and hence \(a = \pm b\) as desired. If \(a \neq 0\) then the equation \(0 = a(k\ell - 1)\) implies that \(k\ell - 1 = 0\), hence \(k\ell = 1\). Since \(k\) and \(\ell\) are integers, this can only happen when \(k = \ell = \pm 1\). We conclude that \(a = bk = \pm b\) as desired.

For part (d), let \(b \neq 0\) and assume that \(a|b\), i.e., assume that there exists \(k \in \mathbb{Z}\) such that \(b = ak\). Note that \(k \neq 0\) since otherwise we would have \(b = 0\), which is a contradiction. Since \(k\) is a nonzero integer we must have \(1 \leq |k|\). Then multiplying both sides by \(|a|\) and using the result of Problem 2 gives
\[
1 \leq |k|,
\]
\[
|a| \leq |a||k|,
\]
\[
|a| \leq |ak|,
\]
\[
|a| \leq |b|,
\]
as desired. \(\square\)

[Remark: Some of the steps here, such as the fact that \(1 \leq |k|\) and the implication “\(1 \leq |k|\) ⇒ “\(|a| \leq |a||k|\)” were not fully explained. We’ll fill in the gaps later when we see the formal definition of \(\mathbb{Z}\).]

\textbf{Problem 4. The Square Root of 5.} Prove that \(\sqrt{5}\) is not a ratio of integers, in two steps.

(a) First prove the following \textbf{lemma}: Let \(n\) be an integer. If \(n^2\) is divisible by 5, then so is \(n\). [Hint: Use the contrapositive and note that there are four separate ways for an integer to be not divisible by 5. Sorry it’s a bit tedious; we will find a better way to do this later.]

(b) Use the method of contradiction to prove that \(\sqrt{5}\) is not a ratio of integers. Explicitly quote your lemma in the proof. [Hint: Your proof should begin as follows: “Assume for contradiction that \(\sqrt{5}\) is a ratio of integers. In this case, . . .”]

\textbf{Lemma:} Let \(n\) be an integer. Then we have “\(5|n^2 \Rightarrow 5|n^2\)”.

Proof. We prove the contrapositive statement “$5 \not| n \Rightarrow 5 \not| n^2$”. So assume that 5 does not divide n. In this case we want to show that 5 does not divide n^2. There are four cases.

Case 1: If $n = 5k + 1$ for some $k \in \mathbb{Z}$ then we have
\[
 n^2 = (5k + 1)^2 = 25k^2 + 10k + 1 = 5(5k^2 + 2k) + 1,
\]
hence n^2 is not divisible by 5.

Case 2: If $n = 5k + 2$ for some $k \in \mathbb{Z}$ then we have
\[
 n^2 = (5k + 2)^2 = 25k^2 + 20k + 4 = 5(5k^2 + 4k) + 4,
\]
hence n^2 is not divisible by 5.

Case 3: If $n = 5k + 3$ for some $k \in \mathbb{Z}$ then we have
\[
 n^2 = (5k + 3)^2 = 25k^2 + 30k + 9 = 5(5k^2 + 6k + 1) + 4,
\]
hence n^2 is not divisible by 5.

Case 4: If $n = 5k + 4$ for some $k \in \mathbb{Z}$ then we have
\[
 n^2 = (5k + 4)^2 = 25k^2 + 40k + 16 = 5(5k^2 + 8k + 3) + 1,
\]
hence n^2 is not divisible by 5. □

[Remark: Here we used the fact that remainders are unique. For example, if $n^2 = 5$(something)$+4$, this means that the remainder of n^2 mod 5 is 4. In particular, the remainder is not zero. We haven’t proved uniqueness of remainders but we will do soon.]

Theorem: $\sqrt{5} \not\in \mathbb{Q}$.

Proof. Assume for contradiction that $\sqrt{5} \in \mathbb{Q}$. In this case we can write $\sqrt{5} = a/b$ where a and b are integers with no common factor except ± 1. Square both sides to get
\[
 \sqrt{5} = a/b \quad 5 = a^2/b^2 \quad 5b^2 = a^2.
\]
Since a^2 is a multiple of 5 the lemma implies that $a = 5k$ for some $k \in \mathbb{Z}$. Now substitution gives
\[
 5b^2 = a^2 \quad 5b^2 = (5k)^2 \quad 5b^2 = 25k^2 \quad b^2 = 5k^2.
\]
Since b^2 is a multiple of 5 the lemma implies that $b = 5\ell$ for some $\ell \in \mathbb{Z}$. But now we see that 5 is a common factor of a and b, which contradicts the fact that they have no common factor except ± 1. This contradiction implies that our original assumption (i.e., that $\sqrt{5} \in \mathbb{Q}$) was false. □

[Remark: In this proof we assumed that every element of \mathbb{Q} can be written in “lowest terms”, which we haven’t proved yet. We will.]