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ON ¢-DERANGEMENT NUMBERS

MICHELLE L. WACHS

(Communicated by Thomas Brylawski)

ABSTRACT. We derive a g-analogue of the classical formula for the number of
derangements of an n element set. Our derivation is entirely analogous to the
classical derivation, but relies on a descent set preserving bijection between the
set of permutations with a given derangement part and the set of shuffles of two
permutations.

A classical application of binomial inversion (more generally the principle
of inclusion—-exclusion) is the derivation of the formula for the number of de-
rangements (permutations with no fixed points) of an n element set:

n k
d,= n!Z (_kl') .
k=0 :

This is obtained by counting permutations according to their number of fixed
points and then inverting the resulting equation.

In this note we shall derive a formula of 1. Gessel [G] for g-counting derange-
ments by the major index statistic in a way entirely analogous to the classical
g = 1 case. That is, we shall g-count permutations with k fixed points and
then use Gauss inversion ( g-binomial inversion or more generally Mobius in-
version on the lattice of subspaces of a vector space) to derive the following
formula for g-derangement numbers:

n -1 k.
4,(@ =1y e,
k=0

A key step in our derivation and an interesting result in its own right is
a descent-preserving bijection between the set of permutations with a given
derangement part and the set of shuffles of two permutations. This bijection
enables us to use a formula of A. Garsia and 1. Gessel for g-counting shuffles.

Gessel [G] obtained the formula for g-derangement numbers as a corollary
of an Eulerian generating function formula for counting permutations by de-
scents, major index, and cycle structure, which is proved via a correspondence
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between partitions and permutations. g-Derangement numbers have also been
interpreted combinatorially on sets of permutations bijectively associated with
derangements by A. Garsia and J. Remmel [GR] using the inversion index statis-
tic and by J. Désarménien [D,] (see [D | ] and [DW]) using the major index
and inversion index statistics.

We shall briefly review some permutation statistic notation and terminology.
For each integer n > 1, let [n#] denote the polynomial 1 + g + q2 + et q"_l
and let [n]! denote the polynomial [r][n — 1]---[1]. Also [0]! is taken to
be 1. The g-binomial coefficients are given by
[n] _ [n]!

k [k)'[n — k]!
for 0<k<n.

For any positive integer n, let (n) denote the set {1,2,...,n}. We shall
think of permutations in the symmetric group #, as words with n distinct
letters in (n). More generally, for a set 4 of r positive integers, ., denotes
the set of permutations of 4 or words with # distinct letters in A . The descent
set of a permutation ¢ = g,,0,,...,0, is des(s) = {i € (n - 1)|o, > 0,_,}.
The major index of ¢ is maj(g) = Etedes(a) i. Let us recall MacMahon’s [M]
formula for maj- g-counting permutations in .7 :

3 g™ =[],
gES,

A letter i € A is said to be a fixed point of 0 € &, if a(i) = i. A
permutation with no fixed points is called a derangement. Let D, denote the
set of all derangements in ./, . The g-derangement numbers are defined by

maj(o)
d@)=>Y 4"
g€D,

It will be convenient to view the empty word A as a derangement and to define
D, to be the set {A}. We also let maj(A) =0 and dy(q)=1.

For any permutation o € #,, where 4 = {a;, < a, < -+~ < q,}, de-
fine the reduction of a to be the permutation in .7, obtained from a by
replacing each letter a, by i, i = 1,2,...,k. The derangement part of a

permutation ¢ € #,, denoted dp(c), is the reduction of the subword of
nonfixed points of ¢. For example, dp(5,3,1,4,7,6,2) = reduction of
5,3,1,7,2 = 4,3,1,5,2. We shall use the convention that the derange-
ment part of the identity permutation is the empty word A. Note that the
derangement part of a permutation is a derangement, and that conversely, any
derangement in D, and k element subset of (n) determines a permutation in
&, with n —k fixed points. Hence, the number of permutations in &, with
a given derangement part in D, is (}). Our goal is to g-count permutations
with a given derangement part.

Let a € D, . There is an obvious bijection between the set {g € 7, |dp(g) =
a} and the set Sh(a,B) of all shuffles of @ and g =k +1,k+2,...,n,
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i.e. permutations in ., which contain a and f as complementary subwords.
Indeed, for each permutation ¢ in the former set, replace the subword of non-
fixed points of ¢ by a and the complementary subword of fixed points by
B . A very useful result of Garsia and Gessel [GG, Theorem 3.1] allows us to
g-count the latter set. Unfortunately, since the above-mentioned bijection does
not preserve the major index, it does not help us in g-counting the former set.
However, we shall show that there is another bijection between these two sets
of permutations which, in fact, preserves descent sets.

Define a letter g, of ¢ = 7,,0,,...,0, € 9”" to be an excedant of o if
o, > i and a subcedant of ¢ if o, < i. Let s(g) and e(c) be the number of
subcedants and excedants, respectively, of ¢. We now fix n andlet k < n. For
o € 7., let ¢ be the permutation of k letters obtained from ¢ by replacing

its ith smallest subcedant by i, i=1,2,...,s(0), its ith smallest fixed point
by s(e)+1i, i =1,2,...,k —s(g) —e(g), and its ith largest excedant by
n—-i+1,i=1,2,...,e(d). Note that 6 depends on n as well as o. For

example, if o = 326541 (with subcedants underlined and excedants overlined)
and n =28 then ¢ = 638721. If k =n then 6 € &, . If o is a derangement

then 6 € &, , where 4={1,2,...,s(0)}u{n—e(0)+1,n—e(a)+2,...,n}.
Lemma 1. Let 0 € ¥, k <n. Then des(g) = des(d).
Proof. Suppose ¢ = 0,,0,,...,0, and 6 = G,,G,,...,6, . Foreach i €

(k — 1), we shall show i € des(o) if and only if i € des(G), by considering the
nine possible designations of subcedant (s), excedant (e), and fixed point (f)
to 0, and o,,, . First note that if g, is a subcedant of ¢ then 6, < g, and if
o, is an excedant of ¢ then 6, > 0;.

Cases 1-3. Suppose (0,,0,,,) is an (s,s), (e,e), or (f,f) pair. It is then
clear that ¢, < o,,, ifand only if 6, <4, .

Case 4. Suppose (g,,0,,,) isa (s,e) pair. Then we have
6,<0,<i<i+l<o0,,<6;,,,
which shows that i ¢ des(g) and i ¢ des(d).

Case 5. Suppose (0;,0 isa (s, f) pair. Now we have

i+1)
0,<i<i+l=o0,, and 6,<s(0)<6,,,

which shows that i ¢ des(o) and i ¢ des(G).

Case 6. Suppose (g;,0;,,) isa (f,s) pair. Thensince 0, | <i+1 and g, =1,

we have
0,,<0;, and &, 6 <s(g)<d;.

This shows that i € des(o) and i € des(d).

Cases 7-9. The remaining three cases are that (o,,0,,,) isa (f,e), (e,s), or
(e, f) pair. These cases are handled similarly to the previous three cases and
are left to the reader. O
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Theorem 2. Let a € D;, k < n, and y = s(a) + 1,5(a) +2,...,n—e(a).
Then the map ¢: {6 € #,|dp(d) = a} — Sh(a,y) defined by ¢(c) =G isa
bijection which preserves descent sets, i.e. des(c) = des(¢(a)). Consequently, for
all J C(n-1),
{o € Z|dp(0) = a, des(g) = J}| = |{o € Sh(a, y)| des(a) = J}|.

Proof. In view of Lemma 1, we need only show that ¢ is an invertible map
whose image is Sh(a, y) . First, we claim that if dp(c) = o then & is obtained
from o by replacing the subword of nonfixed points of ¢ by & and the subword
of fixed points of ¢ by y. Indeed, the subword of fixed points of ¢ is replaced
by the word s(o)+1,s(6)+2, ...,n—e(d), which is precisely y since s(o) =
s(a) and e(o) = e(a) . Also since a is the reduction of the subword of nonfixed
points of o, the position of the ith smallest subcedant of « is the same as the
position of the ith smallest subcedant of ¢ in the subword of nonfixed points.
The same is true for the ith smallest excedant. Hence each subcedant and
excedant of o is replaced by the same letter that replaces the corresponding
subcedant or excedant of a. This means that the subword of subcedants and
excedants of o is replaced by &. We may now conclude that & € Sh(a, y).

The above description of & as a shuffle of & and y also implies that ¢ is
invertible. Indeed, if we replace the & subword of any 7 € Sh(a,y) by the
permutation, of the subword positions, whose reduction is «, and the letters
of the y subword by their positions, we obtain a unique permutation ¢ € .,
such that dp(6) =a and ¢(c)=71. O
Remark. Although a descent set preserving bijection between {o € &, |dp(o) =
a} and Sh(a,B), where 8 =k +1,k+2,...,n, will not be needed in the
sequel, we should point out here that one can be constructed by composing the
bijection ¢ with a bijection between Sh(a, ) and Sh(a,y) described in [BW,
Proof of Proposition 4.1].

Corollary 3. Let a € D, and k < n. Then
maj(o) _ _maj(e) [ 1
. ¢ =4a [k]

dp(o)=a
gES,

Proof. Since maj(c) depends only on des(c), it follows from Theorem 2 that

Z qmaj(a)= Z qmaj(a)

dp(o)=a g€Sh(a,y)
_maj@ [R
=4 [k] ’
with the last step following from Garsia-Gessel [GG, Theorem 3.1]. (For a

bijective alternative proof and generalization of the Garsia-Gessel result, see
[BW].) By Lemma 1, maj(&) = maj(a) , which completes the proof. O

Theorem 4. For all n >0,

n k.
4@ =ty ora®.

k=0
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Proof. By maj- g-counting the permutations in ., according to derangement
part and applying Corollary 3, we obtain

(=3 ™

gES,

3D SID it

k=0 a€Dy dp(c)=a

-ZZ " )

=0 dGDk

Gauss inversion [A, p. 96] on the resulting equation yields,

n

d @ =3 [7] ek

k—O
L0 DRI N Gy
which is equivalent to the desired formula. O
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